Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Hum Mol Genet ; 24(21): 6013-28, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26251043

RESUMEN

Lysosomal dysfunction plays a central role in the pathogenesis of several neurodegenerative disorders, including Parkinson's disease (PD). Several genes linked to genetic forms of PD, including leucine-rich repeat kinase 2 (LRRK2), functionally converge on the lysosomal system. While mutations in LRRK2 are commonly associated with autosomal-dominant PD, the physiological and pathological functions of this kinase remain poorly understood. Here, we demonstrate that LRRK2 regulates lysosome size, number and function in astrocytes, which endogenously express high levels of LRRK2. Expression of LRRK2 G2019S, the most common pathological mutation, produces enlarged lysosomes and diminishes the lysosomal capacity of these cells. Enlarged lysosomes appears to be a common phenotype associated with pathogenic LRRK2 mutations, as we also observed this effect in cells expressing other LRRK2 mutations; R1441C or Y1699C. The lysosomal defects associated with these mutations are dependent on both the catalytic activity of the kinase and autophosphorylation of LRRK2 at serine 1292. Further, we demonstrate that blocking LRRK2's kinase activity, with the potent and selective inhibitor PF-06447475, rescues the observed defects in lysosomal morphology and function. The present study also establishes that G2019S mutation leads to a reduction in lysosomal pH and increased expression of the lysosomal ATPase ATP13A2, a gene linked to a parkinsonian syndrome (Kufor-Rakeb syndrome), in brain samples from mouse and human LRRK2 G2019S carriers. Together, these results demonstrate that PD-associated LRRK2 mutations perturb lysosome function in a kinase-dependent manner, highlighting the therapeutic promise of LRRK2 kinase inhibitors in the treatment of PD.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Lisosomas/enzimología , Proteínas de la Membrana/metabolismo , Mutación , Enfermedad de Parkinson/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Astrocitos/enzimología , Encéfalo/metabolismo , Células Cultivadas , Humanos , Concentración de Iones de Hidrógeno , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Lisosomas/metabolismo , Lisosomas/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Fenotipo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , ATPasas de Translocación de Protón , Regulación hacia Arriba
2.
J Neurochem ; 128(4): 561-76, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24117733

RESUMEN

Genetic mutations in leucine-rich repeat kinase 2 (LRRK2) have been linked to autosomal dominant Parkinson's disease. The most prevalent mutation, G2019S, results in enhanced LRRK2 kinase activity that potentially contributes to the etiology of Parkinson's disease. Consequently, disease progression is potentially mediated by poorly characterized phosphorylation-dependent LRRK2 substrate pathways. To address this gap in knowledge, we transduced SH-SY5Y neuroblastoma cells with LRRK2 G2019S via adenovirus, then determined quantitative changes in the phosphoproteome upon LRRK2 kinase inhibition (LRRK2-IN-1 treatment) using stable isotope labeling of amino acids in culture combined with phosphopeptide enrichment and LC-MS/MS analysis. We identified 776 phosphorylation sites that were increased or decreased at least 50% in response to LRRK2-IN-1 treatment, including sites on proteins previously known to associate with LRRK2. Bioinformatic analysis of those phosphoproteins suggested a potential role for LRRK2 kinase activity in regulating pro-inflammatory responses and neurite morphology, among other pathways. In follow-up experiments, LRRK2-IN-1 inhibited lipopolysaccharide-induced tumor necrosis factor alpha (TNFα) and C-X-C motif chemokine 10 (CXCL10) levels in astrocytes and also enhanced multiple neurite characteristics in primary neuronal cultures. However, LRRK2-IN-1 had almost identical effects in primary glial and neuronal cultures from LRRK2 knockout mice. These data suggest LRRK2-IN-1 may inhibit pathways of perceived LRRK2 pathophysiological function independently of LRRK2 highlighting the need to use multiple pharmacological tools and genetic approaches in studies determining LRRK2 function.


Asunto(s)
Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteómica , Adenoviridae/genética , Animales , Astrocitos/metabolismo , Células Cultivadas , Quimiocina CXCL10/metabolismo , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunohistoquímica , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Lipopolisacáridos/farmacología , Espectrometría de Masas , Ratones , Ratones Noqueados , Neuritas/efectos de los fármacos , Neuritas/fisiología , Fosforilación , Plásmidos/genética , Cultivo Primario de Células , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/efectos de los fármacos , Titanio/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
3.
J Neurosci Methods ; 204(1): 179-188, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22019329

RESUMEN

Advances in imaging technology have enabled automated approaches for quantitative image analysis. In this study, a high content object based image analysis method was developed for quantification of ß-amyloid (Aß) plaques in postmortem brains of Alzheimer's disease (AD) subjects and in transgenic mice over overexpressing Aß. Digital images acquired from immunohistochemically stained sections of the superior frontal gyrus were analyzed for Aß plaque burden using a Definiens object-based segmentation approach. Blinded evaluation of Aß stained sections from AD and aged matched human subjects accurately identified AD cases with one exception. Brains from transgenic mice overexpressing Aß (PS1APP mice) were also evaluated by our Definiens object based image analysis approach. We observed an age-dependent increase in the amount of Aß plaque load that we quantified in both the hippocampus and cortex. From the contralateral hemisphere, we measured the amount of Aß in brain homogenates biochemically and observed a significant correlation between our biochemical measurements and those that we measured by our object based Definiens system in the hippocampus. Assessment of Aß plaque load in PS1APP mice using a manual segmentation technique (Image-Pro Plus) confirmed the results of our object-based image analysis approach. Image acquisition and analysis of 32 stained human slides and 100 mouse slides were executed in 8 h and 22 h, respectively supporting the relatively high throughput features of the Definiens platform. The data show that digital imaging combined with object based image analysis is a reliable and efficient approach to quantifying Aß plaques in human and mouse brain.


Asunto(s)
Algoritmos , Encéfalo/patología , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Microscopía Confocal/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Placa Amiloide/patología , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Aumento de la Imagen/métodos , Masculino , Ratones , Ratones Transgénicos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
4.
Mol Autism ; 2(1): 7, 2011 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-21575186

RESUMEN

BACKGROUND: The inbred mouse strain BTBR T+ tf/J (BTBR) exhibits behavioral deficits that mimic the core deficits of autism. Neuroanatomically, the BTBR strain is also characterized by a complete absence of the corpus callosum. The goal of this study was to identify novel molecular and cellular changes in the BTBR mouse, focusing on neuronal, synaptic, glial and plasticity markers in the limbic system as a model for identifying putative molecular and cellular substrates associated with autistic behaviors. METHODS: Forebrains of 8 to 10-week-old male BTBR and age-matched C57Bl/6J control mice were evaluated by immunohistochemistry using free-floating and paraffin embedded sections. Twenty antibodies directed against antigens specific to neurons, synapses and glia were used. Nissl, Timm and acetylcholinesterase (AchE) stains were performed to assess cytoarchitecture, mossy fibers and cholinergic fiber density, respectively. In the hippocampus, quantitative stereological estimates for the mitotic marker bromodeoxyuridine (BrdU) were performed to determine hippocampal progenitor proliferation, survival and differentiation, and brain-derived neurotrophic factor (BDNF) mRNA was quantified by in situ hybridization. Quantitative image analysis was performed for NG2, doublecortin (DCX), NeuroD, GAD67 and Poly-Sialic Acid Neural Cell Adhesion Molecule (PSA-NCAM). RESULTS: In midline structures including the region of the absent corpus callosum of BTBR mice, the myelin markers 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and myelin basic protein (MBP) were reduced, and the oligodendrocyte precursor NG2 was increased. MBP and CNPase were expressed in small ectopic white matter bundles within the cingulate cortex. Microglia and astrocytes showed no evidence of gliosis, yet orientations of glial fibers were altered in specific white-matter areas. In the hippocampus, evidence of reduced neurogenesis included significant reductions in the number of doublecortin, PSA-NCAM and NeuroD immunoreactive cells in the subgranular zone of the dentate gyrus, and a marked reduction in the number of 5-bromo-2'-deoxyuridine (BrdU) positive progenitors. Furthermore, a significant and profound reduction in BDNF mRNA was seen in the BTBR dentate gyrus. No significant differences were seen in the expression of AchE, mossy fiber synapses or immunoreactivities of microtubule-associated protein MAP2, parvalbumin and glutamate decarboxylase GAD65 or GAD67 isoforms. CONCLUSIONS: We documented modest and selective alterations in glia, neurons and synapses in BTBR forebrain, along with reduced neurogenesis in the adult hippocampus. Of all markers examined, the most distinctive changes were seen in the neurodevelopmental proteins NG2, PSA-NCAM, NeuroD and DCX. Our results are consistent with aberrant development of the nervous system in BTBR mice, and may reveal novel substrates to link callosal abnormalities and autistic behaviors. The changes that we observed in the BTBR mice suggest potential novel therapeutic strategies for intervention in autism spectrum disorders.

5.
Int J Nanomedicine ; 3(1): 75-82, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18488418

RESUMEN

The shape memory effect and superelastic properties of NiTi (or Nitinol, a nickel-titanium alloy) have already attracted much attention for various biomedical applications (such as vascular stents, orthodontic wires, orthopedic implants, etc). However, for vascular stents, conventional approaches have required coating NiTi with anti-thrombogenic or antiinflammatory drug-eluting polymers which as of late have proven problematic for healing atherosclerotic blood vessels. Instead of focusing on the use of drug-eluting anti-thrombogenic or anti-inflammatory proteins, this study focused on promoting the formation of a natural antithrombogenic and anti-inflammatory surface on metallic stents: the endothelium. In this study, we synthesized various NiTi substrates with different micron to nanometer surface roughness by using dissimilar dimensions of constituent NiTi powder. Endothelial cell adhesion on these compacts was compared with conventional commercially pure (cp) titanium (Ti) samples. The results after 5 hrs showed that endothelial cells adhered much better on fine grain (< 60 microm) compared with coarse grain NiTi compacts (< 100 microm). Coarse grain NiTi compacts and conventional Ti promoted similar levels of endothelial cell adhesion. In addition, cells proliferated more after 5 days on NiTi with greater sub-micron and nanoscale surface roughness compared with coarse grain NiTi. In this manner, this study emphasized the positive pole that NiTi with sub-micron to nanometer surface features can play in promoting a natural anti-thrombogenic and anti-inflammatory surface (the endothelium) on a vascular stent and, thus, suggests that more studies should be conducted on NiTi with sub-micron to nanometer surface features.


Asunto(s)
Aleaciones/química , Materiales Biocompatibles/química , Células Endoteliales/citología , Células Endoteliales/fisiología , Nanoestructuras/química , Nanoestructuras/ultraestructura , Animales , Adhesión Celular , Recuento de Células , Proliferación Celular , Células Cultivadas , Ensayo de Materiales , Tamaño de la Partícula , Ratas , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...