Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1162440, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37484478

RESUMEN

Introduction: The study of yield and resistance/tolerance to pest are related traits fundamental for maize breeding programs. Genomic selection (GS), which uses all marker information to calculate genomic breeding values, is presented as an emerging alternative to phenotypic and marker-assisted selections for improving complex traits controlled by many genes with small effects. Therefore, although phenotypic selection (PS) has been effective for increasing resistance and yield under high infestation with maize stem borers, higher genetic gains are expected to be obtained through GS based on the complex architecture of both traits. Our objective was to test whether GS is more effective than PS for improving resistance and/or tolerance to maize stem borers and grain yield. Methods: For this, we compared different selection programs based on phenotype and genotypic value for a single trait, resistance or yield, and for both traits together. Results and discussion: We obtained that GS achieved the highest genetic gain for yield, meanwhile phenotypic selection for yield was the program that achieved the highest reduction of tunnel length, but was ineffective for increasing yield. However, phenotypic or genomic selection for increased resistance may be more effective in improving both traits together; although the gains per cycle would be small for both traits.

2.
PLoS Genet ; 17(12): e1009797, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34928949

RESUMEN

Inbreeding depression is the reduction in fitness and vigor resulting from mating of close relatives observed in many plant and animal species. The extent to which the genetic load of mutations contributing to inbreeding depression is due to large-effect mutations versus variants with very small individual effects is unknown and may be affected by population history. We compared the effects of outcrossing and self-fertilization on 18 traits in a landrace population of maize, which underwent a population bottleneck during domestication, and a neighboring population of its wild relative teosinte. Inbreeding depression was greater in maize than teosinte for 15 of 18 traits, congruent with the greater segregating genetic load in the maize population that we predicted from sequence data. Parental breeding values were highly consistent between outcross and selfed offspring, indicating that additive effects determine most of the genetic value even in the presence of strong inbreeding depression. We developed a novel linkage scan to identify quantitative trait loci (QTL) representing large-effect rare variants carried by only a single parent, which were more important in teosinte than maize. Teosinte also carried more putative juvenile-acting lethal variants identified by segregation distortion. These results suggest a mixture of mostly polygenic, small-effect partially recessive effects in linkage disequilibrium underlying inbreeding depression, with an additional contribution from rare larger-effect variants that was more important in teosinte but depleted in maize following the domestication bottleneck. Purging associated with the maize domestication bottleneck may have selected against some large effect variants, but polygenic load is harder to purge and overall segregating mutational burden increased in maize compared to teosinte.


Asunto(s)
Domesticación , Depresión Endogámica/genética , Sitios de Carácter Cuantitativo/genética , Zea mays/genética , Genes de Plantas , Variación Genética/genética , Fenotipo , Fitomejoramiento , Proteínas de Plantas/genética , Selección Genética/genética , Zea mays/crecimiento & desarrollo
3.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34686607

RESUMEN

Very little is known about how domestication was constrained by the quantitative genetic architecture of crop progenitors and how quantitative genetic architecture was altered by domestication. Yang et al. [C. J. Yang et al., Proc. Natl. Acad. Sci. U.S.A. 116, 5643-5652 (2019)] drew multiple conclusions about how genetic architecture influenced and was altered by maize domestication based on one sympatric pair of teosinte and maize populations. To test the generality of their conclusions, we assayed the structure of genetic variances, genetic correlations among traits, strength of selection during domestication, and diversity in genetic architecture within teosinte and maize. Our results confirm that additive genetic variance is decreased, while dominance genetic variance is increased, during maize domestication. The genetic correlations are moderately conserved among traits between teosinte and maize, while the genetic variance-covariance matrices (G-matrices) of teosinte and maize are quite different, primarily due to changes in the submatrix for reproductive traits. The inferred long-term selection intensities during domestication were weak, and the neutral hypothesis was rejected for reproductive and environmental response traits, suggesting that they were targets of selection during domestication. The G-matrix of teosinte imposed considerable constraint on selection during the early domestication process, and constraint increased further along the domestication trajectory. Finally, we assayed variation among populations and observed that genetic architecture is generally conserved among populations within teosinte and maize but is radically different between teosinte and maize. While selection drove changes in essentially all traits between teosinte and maize, selection explains little of the difference in domestication traits among populations within teosinte or maize.


Asunto(s)
Productos Agrícolas/genética , Genes de Plantas , Zea mays/genética , Evolución Molecular , Flores , Interacción Gen-Ambiente , Reproducción , Zea mays/fisiología
4.
Sci Rep ; 10(1): 20817, 2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33257818

RESUMEN

Plants have the capacity to respond to conserved molecular features known as microbe-associated molecular patterns (MAMPs). The goal of this work was to assess variation in the MAMP response in sorghum, to map loci associated with this variation, and to investigate possible connections with variation in quantitative disease resistance. Using an assay that measures the production of reactive oxygen species, we assessed variation in the MAMP response in a sorghum association mapping population known as the sorghum conversion population (SCP). We identified consistent variation for the response to chitin and flg22-an epitope of flagellin. We identified two SNP loci associated with variation in the flg22 response and one with the chitin response. We also assessed resistance to Target Leaf Spot (TLS) disease caused by the necrotrophic fungus Bipolaris cookei in the SCP. We identified one strong association on chromosome 5 near a previously characterized disease resistance gene. A moderately significant correlation was observed between stronger flg22 response and lower TLS resistance. Possible reasons for this are discussed.


Asunto(s)
Moléculas de Patrón Molecular Asociado a Patógenos , Enfermedades de las Plantas/inmunología , Sorghum/genética , Sorghum/inmunología , Bipolaris , Quitina/inmunología , Resistencia a la Enfermedad/genética , Flagelina/inmunología , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas/microbiología , Pseudomonas syringae , Sorghum/microbiología
5.
PLoS Genet ; 16(5): e1008791, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32407310

RESUMEN

The genetics of domestication has been extensively studied ever since the rediscovery of Mendel's law of inheritance and much has been learned about the genetic control of trait differences between crops and their ancestors. Here, we ask how domestication has altered genetic architecture by comparing the genetic architecture of 18 domestication traits in maize and its ancestor teosinte using matched populations. We observed a strongly reduced number of QTL for domestication traits in maize relative to teosinte, which is consistent with the previously reported depletion of additive variance by selection during domestication. We also observed more dominance in maize than teosinte, likely a consequence of selective removal of additive variants. We observed that large effect QTL have low minor allele frequency (MAF) in both maize and teosinte. Regions of the genome that are strongly differentiated between teosinte and maize (high FST) explain less quantitative variation in maize than teosinte, suggesting that, in these regions, allelic variants were brought to (or near) fixation during domestication. We also observed that genomic regions of high recombination explain a disproportionately large proportion of heritable variance both before and after domestication. Finally, we observed that about 75% of the additive variance in both teosinte and maize is "missing" in the sense that it cannot be ascribed to detectable QTL and only 25% of variance maps to specific QTL. This latter result suggests that morphological evolution during domestication is largely attributable to very large numbers of QTL of very small effect.


Asunto(s)
Variación Genética , Sitios de Carácter Cuantitativo , Zea mays/genética , Domesticación , Flujo Génico , Frecuencia de los Genes , Genes de Plantas , Genética de Población , Carácter Cuantitativo Heredable , Selección Genética , Zea mays/clasificación
6.
BMC Plant Biol ; 19(1): 431, 2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31623579

RESUMEN

BACKGROUND: Corn borers constitute an important pest of maize around the world; in particular Sesamia nonagrioides Lefèbvre, named Mediterranean corn borer (MCB), causes important losses in Southern Europe. Methods of selection can be combined with transgenic approaches to increase the efficiency and durability of the resistance to corn borers. Previous studies of the genetic factors involved in resistance to MCB have been carried out using bi-parental populations that have low resolution or using association inbred panels that have a low power to detect rare alleles. We developed a Multi-parent Advanced Generation InterCrosses (MAGIC) population to map with high resolution the genetic determinants of resistance to MCB. RESULTS: We detected multiple single nucleotide polymorphisms (SNPs) of low effect associated with resistance to stalk tunneling by MCB. We dissected a wide region related to stalk tunneling in multiple studies into three smaller regions (at ~ 150, ~ 155, and ~ 165 Mb in chromosome 6) that closely overlap with regions associated with cell wall composition. We also detected regions associated with kernel resistance and agronomic traits, although the co-localization of significant regions between traits was very low. This indicates that it is possible the concurrent improvement of resistance and agronomic traits. CONCLUSIONS: We developed a mapping population which allowed a finer dissection of the genetics of maize resistance to corn borers and a solid nomination of candidate genes based on functional information. The population, given its large variability, was also adequate to map multiple traits and study the relationship between them.


Asunto(s)
Resistencia a la Enfermedad/genética , Mariposas Nocturnas/fisiología , Enfermedades de las Plantas/inmunología , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Zea mays/genética , Alelos , Animales , Mapeo Cromosómico , Estudio de Asociación del Genoma Completo , Genotipo , Fenotipo , Enfermedades de las Plantas/parasitología , Zea mays/inmunología , Zea mays/parasitología
7.
Proc Natl Acad Sci U S A ; 116(12): 5643-5652, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30842282

RESUMEN

The process of evolution under domestication has been studied using phylogenetics, population genetics-genomics, quantitative trait locus (QTL) mapping, gene expression assays, and archaeology. Here, we apply an evolutionary quantitative genetic approach to understand the constraints imposed by the genetic architecture of trait variation in teosinte, the wild ancestor of maize, and the consequences of domestication on genetic architecture. Using modern teosinte and maize landrace populations as proxies for the ancestor and domesticate, respectively, we estimated heritabilities, additive and dominance genetic variances, genetic-by-environment variances, genetic correlations, and genetic covariances for 18 domestication-related traits using realized genomic relationships estimated from genome-wide markers. We found a reduction in heritabilities across most traits, and the reduction is stronger in reproductive traits (size and numbers of grains and ears) than vegetative traits. We observed larger depletion in additive genetic variance than dominance genetic variance. Selection intensities during domestication were weak for all traits, with reproductive traits showing the highest values. For 17 of 18 traits, neutral divergence is rejected, suggesting they were targets of selection during domestication. Yield (total grain weight) per plant is the sole trait that selection does not appear to have improved in maize relative to teosinte. From a multivariate evolution perspective, we identified a strong, nonneutral divergence between teosinte and maize landrace genetic variance-covariance matrices (G-matrices). While the structure of G-matrix in teosinte posed considerable genetic constraint on early domestication, the maize landrace G-matrix indicates that the degree of constraint is more unfavorable for further evolution along the same trajectory.


Asunto(s)
Genética de Población/métodos , Zea mays/genética , Agricultura , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/fisiología , Domesticación , Grano Comestible/genética , Evolución Molecular , Genómica , Fenotipo , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo , Selección Genética/genética
8.
Proc Natl Acad Sci U S A ; 114(1): E57-E66, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27999177

RESUMEN

Leaf shape varies spectacularly among plants. Leaves are the primary source of photoassimilate in crop plants, and understanding the genetic basis of variation in leaf morphology is critical to improving agricultural productivity. Leaf shape played a unique role in cotton improvement, as breeders have selected for entire and lobed leaf morphs resulting from a single locus, okra (l-D1), which is responsible for the major leaf shapes in cotton. The l-D1 locus is not only of agricultural importance in cotton, but through pioneering chimeric and morphometric studies, it has contributed to fundamental knowledge about leaf development. Here we show that an HD-Zip transcription factor homologous to the LATE MERISTEM IDENTITY1 (LMI1) gene of Arabidopsis is the causal gene underlying the l-D1 locus. The classical okra leaf shape allele has a 133-bp tandem duplication in the promoter, correlated with elevated expression, whereas an 8-bp deletion in the third exon of the presumed wild-type normal allele causes a frame-shifted and truncated coding sequence. Our results indicate that subokra is the ancestral leaf shape of tetraploid cotton that gave rise to the okra allele and that normal is a derived mutant allele that came to predominate and define the leaf shape of cultivated cotton. Virus-induced gene silencing (VIGS) of the LMI1-like gene in an okra variety was sufficient to induce normal leaf formation. The developmental changes in leaves conferred by this gene are associated with a photosynthetic transcriptomic signature, substantiating its use by breeders to produce a superior cotton ideotype.


Asunto(s)
Gossypium/genética , Gossypium/fisiología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Factores de Transcripción/genética , Secuencia de Aminoácidos/genética , Mutación del Sistema de Lectura/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Regiones Promotoras Genéticas/genética
9.
J Agric Food Chem ; 64(3): 539-51, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26690311

RESUMEN

Previous results suggest a relationship between maize hydroxycinnamate concentration in the pith tissues and resistance to stem tunneling by Mediterranean corn borer (MCB, Sesamia nonagrioides Lef.) larvae. This study performs a more precise experiment, mapping an F2 derived from the cross between two inbreds with contrasting levels for hydroxycinnamates EP125 × PB130. We aimed to co-localize genomic regions involved in hydroxycinnamate synthesis and resistance to MCB and to highlight the particular route for each hydroxycinnamate component in relation to the better known phenylpropanoid pathway. Seven quantitative trait loci (QTLs) for p-coumarate, two QTLs for ferulate, and seven QTLs for total diferulates explained 81.7, 26.9, and 57.8% of the genotypic variance, respectively. In relation to borer resistance, alleles for increased hydroxycinnamate content (affecting one or more hydroxycinnamate compounds) could be associated with favorable effects on stem resistance to MCB, particularly the putative role of p-coumarate in borer resistance.


Asunto(s)
Ácidos Cumáricos/metabolismo , Mariposas Nocturnas/fisiología , Enfermedades de las Plantas/parasitología , Zea mays/inmunología , Animales , Resistencia a la Enfermedad , Endogamia , Larva/fisiología , Enfermedades de las Plantas/inmunología , Sitios de Carácter Cuantitativo , Zea mays/genética , Zea mays/metabolismo , Zea mays/parasitología
10.
BMC Plant Biol ; 15: 265, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26530038

RESUMEN

BACKGROUND: A QTL mapping study for maize resistance to the Mediterranean corn borer (MCB) was performed with a RIL population derived from the cross B73 × CML103. To develop commercial inbreds of maize resistant to the MCB for use in Europe, it would be useful to transfer resistance from tropical germplasm like the subtropical inbred CML103 to temperate lines. The inbred B73 was chosen as representative of the Stiff Stock heterotic group, a major heterotic group used in hybrid grown in both North American and Europe. The objectives were to study the architecture of genetic factors for resistance to MCB and to check the feasibility of using marker-assisted selection (MAS) for transferring those genetic factors. RESULTS: Eight quantitative trait loci (QTL) were declared significant for resistance traits and eight QTL were located for agronomic traits. Alleles from CML103 at QTL significant for tunnel length could reduce tunnel length made for MCB in inbred B73 in more than 8 cm; favorable alleles for yield were also found in CML103 and no genetic correlation coefficient between tunnel length and yield was detected. CONCLUSIONS: MAS for transferring resistance genes to corn borer attack from CML103 to B73 could be successful based on cross validation results and a negative effect on yield would not be expected.


Asunto(s)
Antibiosis , Hibridación Genética , Mariposas Nocturnas/fisiología , Sitios de Carácter Cuantitativo , Zea mays/fisiología , Animales , Mapeo Cromosómico , Europa (Continente) , Conducta Alimentaria , Larva/crecimiento & desarrollo , Larva/fisiología , Mariposas Nocturnas/crecimiento & desarrollo , Zea mays/genética
11.
BMC Plant Biol ; 15: 35, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25652257

RESUMEN

BACKGROUND: Corn borers are the primary maize pest; their feeding on the pith results in stem damage and yield losses. In this study, we performed a genome-wide association study (GWAS) to identify SNPs associated with resistance to Mediterranean corn borer in a maize diversity panel using a set of more than 240,000 SNPs. RESULTS: Twenty five SNPs were significantly associated with three resistance traits: 10 were significantly associated with tunnel length, 4 with stem damage, and 11 with kernel resistance. Allelic variation at each significant SNP was associated with from 6 to 9% of the phenotypic variance. A set of genes containing or physically close to these SNPs are proposed as candidate genes for borer resistance, supported by their involvement in plant defense-related mechanisms in previously published evidence. The linkage disequilibrium decayed (r(2) < 0.10) rapidly within short distance, suggesting high resolution of GWAS associations. CONCLUSIONS: Most of the candidate genes found in this study are part of signaling pathways, others act as regulator of expression under biotic stress condition, and a few genes are encoding enzymes with antibiotic effect against insects such as the cystatin1 gene and the defensin proteins. These findings contribute to the understanding the complex relationship between plant-insect interactions.


Asunto(s)
Genes de Plantas , Estudio de Asociación del Genoma Completo , Mariposas Nocturnas/fisiología , Zea mays/genética , Animales , Polimorfismo de Nucleótido Simple , Zea mays/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA