Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioinformatics ; 36(9): 2731-2739, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32003788

RESUMEN

MOTIVATION: To facilitate accurate estimation of statistical significance of sequence similarity in profile-profile searches, queries should ideally correspond to protein domains. For multidomain proteins, using domains as queries depends on delineation of domain borders, which may be unknown. Thus, proteins are commonly used as queries that complicate establishing homology for similarities close to cutoff levels of statistical significance. RESULTS: In this article, we describe an iterative approach, called LAMPA, LArge Multidomain Protein Annotator, that resolves the above conundrum by gradual expansion of hit coverage of multidomain proteins through re-evaluating statistical significance of hit similarity using ever smaller queries defined at each iteration. LAMPA employs TMHMM and HHsearch for recognition of transmembrane regions and homology, respectively. We used Pfam database for annotating 2985 multidomain proteins (polyproteins) composed of >1000 amino acid residues, which dominate proteomes of RNA viruses. Under strict cutoffs, LAMPA outperformed HHsearch-mediated runs using intact polyproteins as queries by three measures: number of and coverage by identified homologous regions, and number of hit Pfam profiles. Compared to HHsearch, LAMPA identified 507 extra homologous regions in 14.4% of polyproteins. This Pfam-based annotation of RNA virus polyproteins by LAMPA was also superior to RefSeq expert annotation by two measures, region number and annotated length, for 69.3% of RNA virus polyprotein entries. We rationalized the obtained results based on dependencies of HHsearch hit statistical significance for local alignment similarity score from lengths and diversities of query-target pairs in computational experiments. AVAILABILITY AND IMPLEMENTATION: LAMPA 1.0.0 R package is placed at github (https://github.com/Gorbalenya-Lab/LAMPA). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Poliproteínas , Virus ARN , Bases de Datos de Proteínas , Proteínas/genética , Programas Informáticos
2.
J Virol ; 91(6)2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28053107

RESUMEN

In five experimentally characterized arterivirus species, the 5'-end genome coding region encodes the most divergent nonstructural proteins (nsp's), nsp1 and nsp2, which include papain-like proteases (PLPs) and other poorly characterized domains. These are involved in regulation of transcription, polyprotein processing, and virus-host interaction. Here we present results of a bioinformatics analysis of this region of 14 arterivirus species, including that of the most distantly related virus, wobbly possum disease virus (WPDV), determined by a modified 5' rapid amplification of cDNA ends (RACE) protocol. By combining profile-profile comparisons and phylogeny reconstruction, we identified an association of the four distinct domain layouts of nsp1-nsp2 with major phylogenetic lineages, implicating domain gain, including duplication, and loss in the early nsp1 evolution. Specifically, WPDV encodes highly divergent homologs of PLP1a, PLP1b, PLP1c, and PLP2, with PLP1a lacking the catalytic Cys residue, but does not encode nsp1 Zn finger (ZnF) and "nuclease" domains, which are conserved in other arteriviruses. Unexpectedly, our analysis revealed that the only catalytically active nsp1 PLP of equine arteritis virus (EAV), known as PLP1b, is most similar to PLP1c and thus is likely to be a PLP1b paralog. In all non-WPDV arteriviruses, PLP1b/c and PLP1a show contrasting patterns of conservation, with the N- and C-terminal subdomains, respectively, being enriched with conserved residues, which is indicative of different functional specializations. The least conserved domain of nsp2, the hypervariable region (HVR), has its size varied 5-fold and includes up to four copies of a novel PxPxPR motif that is potentially recognized by SH3 domain-containing proteins. Apparently, only EAV lacks the signal that directs -2 ribosomal frameshifting in the nsp2 coding region.IMPORTANCE Arteriviruses comprise a family of mammalian enveloped positive-strand RNA viruses that include some of the most economically important pathogens of swine. Most of our knowledge about this family has been obtained through characterization of viruses from five species: Equine arteritis virus, Simian hemorrhagic fever virus, Lactate dehydrogenase-elevating virus, Porcine respiratory and reproductive syndrome virus 1, and Porcine respiratory and reproductive syndrome virus 2 Here we present the results of comparative genomics analyses of viruses from all known 14 arterivirus species, including the most distantly related virus, WPDV, whose genome sequence was completed in this study. Our analysis focused on the multifunctional 5'-end genome coding region that encodes multidomain nonstructural proteins 1 and 2. Using diverse bioinformatics techniques, we identified many patterns of evolutionary conservation that are specific to members of distinct arterivirus species, both characterized and novel, or their groups. They are likely associated with structural and functional determinants important for virus replication and virus-host interaction.


Asunto(s)
Arterivirus/clasificación , Arterivirus/genética , Evolución Molecular , Genes Virales , Genoma Viral , Dominios Proteicos , Proteínas no Estructurales Virales/genética , Biología Computacional , Variación Genética , Filogenia
3.
Nucleic Acids Res ; 43(17): 8416-34, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26304538

RESUMEN

RNA viruses encode an RNA-dependent RNA polymerase (RdRp) that catalyzes the synthesis of their RNA(s). In the case of positive-stranded RNA viruses belonging to the order Nidovirales, the RdRp resides in a replicase subunit that is unusually large. Bioinformatics analysis of this non-structural protein has now revealed a nidoviral signature domain (genetic marker) that is N-terminally adjacent to the RdRp and has no apparent homologs elsewhere. Based on its conservation profile, this domain is proposed to have nucleotidylation activity. We used recombinant non-structural protein 9 of the arterivirus equine arteritis virus (EAV) and different biochemical assays, including irreversible labeling with a GTP analog followed by a proteomics analysis, to demonstrate the manganese-dependent covalent binding of guanosine and uridine phosphates to a lysine/histidine residue. Most likely this was the invariant lysine of the newly identified domain, named nidovirus RdRp-associated nucleotidyltransferase (NiRAN), whose substitution with alanine severely diminished the described binding. Furthermore, this mutation crippled EAV and prevented the replication of severe acute respiratory syndrome coronavirus (SARS-CoV) in cell culture, indicating that NiRAN is essential for nidoviruses. Potential functions supported by NiRAN may include nucleic acid ligation, mRNA capping and protein-primed RNA synthesis, possibilities that remain to be explored in future studies.


Asunto(s)
Nidovirales/enzimología , Nucleotidiltransferasas/química , ARN Polimerasa Dependiente del ARN/química , Proteínas Virales/química , Sitios de Unión , Secuencia Conservada , Equartevirus/enzimología , Equartevirus/fisiología , Guanosina/química , Guanosina Trifosfato/metabolismo , Manganeso/química , Nidovirales/genética , Nucleótidos/metabolismo , Nucleotidiltransferasas/metabolismo , Fosfatos/química , Poliproteínas/química , Poliproteínas/metabolismo , Estructura Terciaria de Proteína , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Uridina/química , Uridina Trifosfato/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral
4.
J Gen Virol ; 96(9): 2643-2655, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26041874

RESUMEN

The 3'-terminal domain of the most conserved ORF1b in three of the four families of the order Nidovirales (except for the family Arteriviridae) encodes a (putative) 2'-O-methyltransferase (2'-O-MTase), known as non structural protein (nsp) 16 in the family Coronaviridae and implicated in methylation of the 5' cap structure of nidoviral mRNAs. As with coronavirus transcripts, arterivirus mRNAs are assumed to possess a 5' cap although no candidate MTases have been identified thus far. To address this knowledge gap, we analysed the uncharacterized nsp12 of arteriviruses, which occupies the ORF1b position equivalent to that of the nidovirus 2'-O-MTase (coronavirus nsp16). In our in-depth bioinformatics analysis of nsp12, the protein was confirmed to be family specific whilst having diverged much further than other nidovirus ORF1b-encoded proteins, including those of the family Coronaviridae. Only one invariant and several partially conserved, predominantly aromatic residues were identified in nsp12, which may adopt a structure with alternating α-helices and ß-strands, an organization also found in known MTases. However, no statistically significant similarity was found between nsp12 and the twofold larger coronavirus nsp16, nor could we detect MTase activity in biochemical assays using recombinant equine arteritis virus (EAV) nsp12. Our further analysis established that this subunit is essential for replication of this prototypic arterivirus. Using reverse genetics, we assessed the impact of 25 substitutions at 14 positions, yielding virus phenotypes ranging from WT-like to non-viable. Notably, replacement of the invariant phenylalanine 109 with tyrosine was lethal. We concluded that nsp12 plays an essential role during EAV replication, possibly by acting as a co-factor for another enzyme.


Asunto(s)
Proteínas Arqueales/metabolismo , Coronavirus/enzimología , Equartevirus/metabolismo , Metiltransferasas/metabolismo , Poliproteínas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/genética , Arterivirus/química , Arterivirus/enzimología , Arterivirus/genética , Coronavirus/química , Coronavirus/genética , Equartevirus/química , Equartevirus/genética , Metilación , Metiltransferasas/química , Metiltransferasas/genética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Poliproteínas/química , Poliproteínas/genética , Procesamiento Proteico-Postraduccional , ARN Viral/genética , ARN Viral/metabolismo , Alineación de Secuencia , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética
5.
J Neurosurg ; 121(1): 161-4, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24766103

RESUMEN

The authors have developed a novel device, which they have named Mari, that allows hands-free utilization of the surgical microscope. The device is attached to the eyepieces of a multifunction counterweight-balanced surgical microscope and consists of a metallic holder with supportive plates that facilitate interaction between the device and surgeon's head. On the holder are installed 1) an electric switch, which allows the surgeon to release the microscope's magnetic clutches, allowing movement of the microscope along the x, y, and z axes as well as the rotational and diagonal ones, and 2) a joystick at the level of the surgeon's mouth for adjustment of focus and zoom. The authors report on the initial experience with the use of the device at the Burdenko Neurosurgery Institute, where the senior author used it in approximately 600 procedures between 2006 and 2012. The surgeries ranged in difficulty and in duration (from 20 minutes to 7 hours, median 2.5 hours). Use of the Mari device resulted in increased accuracy of the surgical manipulations and a reduction in the duration of surgery.


Asunto(s)
Microscopía/instrumentación , Microcirugia/instrumentación , Procedimientos Neuroquirúrgicos/instrumentación , Humanos , Microscopía/métodos , Procedimientos Neuroquirúrgicos/métodos
6.
Antiviral Res ; 87(2): 95-110, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20153379

RESUMEN

This review focuses on bioinformatics technologies employed by the EU-sponsored multidisciplinary VIZIER consortium (Comparative Structural Genomics of Viral Enzymes Involved in Replication, FP6 PROJECT: 2004-511960, active from 1 November 2004 to 30 April 2009), to achieve its goals. From the management of the information flow of the project, to bioinformatics-mediated selection of RNA viruses and prediction of protein targets, to the analysis of 3D protein structures and antiviral compounds, these technologies provided a communication framework and integrated solutions for steady and timely advancement of the project. RNA viruses form a large class of major pathogens that affect humans and domestic animals. Such RNA viruses as HIV, Influenza virus and Hepatitis C virus are of prime medical concern today, but the identities of viruses that will threaten human population tomorrow are far from certain. To contain outbreaks of common or newly emerging infections, prototype drugs against viruses representing the Virus Universe must be developed. This concept was championed by the VIZIER project which brought together experts in diverse fields to produce a concerted and sustained effort for identifying and validating targets for antivirus therapy in dozens of RNA virus lineages.


Asunto(s)
Investigación Biomédica/organización & administración , Investigación Biomédica/tendencias , Biología Computacional/métodos , Enzimas/metabolismo , Virus ARN/enzimología , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos , Animales , Bases de Datos de Proteínas , Enzimas/química , Enzimas/genética , Unión Europea , Humanos , Estructura Terciaria de Proteína , Virus ARN/efectos de los fármacos , Virus ARN/genética , Proteínas Virales/química , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...