Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros













Intervalo de año de publicación
1.
Biomed Tech (Berl) ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38258440

RESUMEN

OBJECTIVES: The biological performance of aluminum oxide-titanium (Al2O3-Ti) composites requires special attention to achieve improved osteoblastic differentiation, and subsequent osseointegration/strong anchorage with the surrounding bone. Therefore, the aim of this study was to improve them by providing calcium phosphate (Ca-P)/bovine serum albumin (BSA) coating on their surfaces. METHODS: Ca-P)/BSA coatings were prepared on the surfaces of 75vol.%Ti composites (75Ti-BSA) and pure Ti (100Ti-BSA as a control). The surface characteristics, phase analysis, micro-hardness, BSA release profile and biological responses including cytotoxicity, cell viability, differentiation, mineralization, and cell adhesion were evaluated. RESULTS: The results showed that lower cytotoxicity% and higher mitochondrial activity or viability % were associated with the samples with Ca-P/BSA coatings (particularly 75Ti-BSA having 21.3% cytotoxicity, 111.4% and 288.6% viability at day 1 and 7, respectively). Furthermore, the Ca-P/BSA coating could highly enhance the differentiation of pre-osteoblast cells into osteoblasts in 75Ti-BSA group (ALP concentration of 4.8 ng/ml). However, its influence on cell differentiation in 100Ti-BSA group was negligible. Similar results were also obtained from mineralization assay. The results on cell adhesion revealed that the Ca-P/BSA coated samples differently interacted with MC3T3-E1 cells; enlarged flat cells on 75Ti-BSA vs more spindle-shaped cells on 100Ti-BSA. CONCLUSIONS: Ca-P/BSA coated Al2O3-Ti provided promising biological performance, superior to that of uncoated composites. Therefore, they have the potential to improve implant osseointegration.

2.
Brain Behav ; 13(11): e3224, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37596045

RESUMEN

BACKGROUND: Prenatal exposure to valproic acid (VPA) may enhance the risk of autism spectrum disorder (ASD) in children. This study investigated the effect of Prangos ferulacea (L.) on behavioral alterations, hippocampal oxidative stress markers, and apoptotic deficits in a rat model of autism induced by valproic acid. METHODS: Pregnant rats received VPA (600 mg/kg, intraperitoneally [i.p.]) or saline on gestational day 12.5 (E 12.5). Starting from the 30th postnatal day (PND 30), the pups were i.p. administered Prangos ferulacea (PF, 100 and 200 mg/kg), or the vehicle, daily until PND 58. On PND 30 and 58, various behavioral tasks were used to evaluate pups, including the open field, elevated plus-maze, hot-plate, and rotarod test. On PND 65, the animals were euthanized, and their brains were removed for histopathological and biochemical assay. RESULTS: Prenatal exposure to VPA caused significant behavioral changes in the offspring, reversed by administering an extract of Prangos ferulacea (L.). Additionally, prenatal VPA administration resulted in increased levels of malondialdehyde and deficits in antioxidant enzyme activities in the hippocampus, including catalase and glutathione, ameliorated by PF. Likewise, postnatal treatment with PF improved VPA-induced dysregulation of Bax and Blc2 in the hippocampus and reduced neuronal death in CA1, CA3, and dentate gyrus. CONCLUSION: The findings of this study suggest that postnatal administration of PF can prevent VPA-induced ASD-like behaviors by exhibiting antiapoptotic and antioxidant properties. Therefore, PF may have the potential as an adjunct in the management of ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Efectos Tardíos de la Exposición Prenatal , Humanos , Embarazo , Femenino , Niño , Ratas , Animales , Ácido Valproico , Trastorno Autístico/inducido químicamente , Trastorno Autístico/tratamiento farmacológico , Antioxidantes/farmacología , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , Efectos Tardíos de la Exposición Prenatal/patología , Ratas Wistar , Hipocampo/patología , Conducta Social , Conducta Animal/fisiología , Estrés Oxidativo , Modelos Animales de Enfermedad
3.
Avicenna J Phytomed ; 12(6): 602-613, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36583179

RESUMEN

Objective: Peripheral nerve injury is a clinical problem that may cause sensory and motor inabilities. Sesamol is an antioxidant that can help in repairing damaged central nervous system (CNS) and other organs. The present study aimed to investigate whether the antioxidant effects of sesamol could improve the function, structure, and myelination in rats' damaged peripheral nervous system (PNS). Materials and Methods: In this study, 28 adult male Wistar rats were randomly divided into four groups. In the sham group, the sciatic nerve was exposed and restored to its place without inducing crush injury. The control received DMSO (solvent) and the two experimental groups received 50 or 100 mg/kg sesamol intraperitoneally for 28 days after sciatic nerve crush injury, respectively. Next, sciatic function index (SFI), superoxide dismutase (SOD) activity, malondialdehyde (MDA) level, expression of nerve growth factor (NGF) and myelin protein zero (MPZ) proteins in the sciatic nerve, and histological indices of the sciatic nerve and gastrocnemius muscle were evaluated. Results: The results showed that sesamol reduced oxidative stress parameters, increased expression of NGF and MPZ proteins, and improved function and regeneration of the damaged sciatic nerve. Furthermore, a significant regeneration was observed in the gastrocnemius muscle after treatment with sesamol. Although administration of both doses of sesamol was useful, the 100 mg/kg dose was more effective than the 50 mg/kg one. Conclusion: The results suggest that sesamol may be effective in improving damaged peripheral nerves in rats by reducing oxidative stress and increasing the expression of NGF and MPZ proteins.

4.
Acta Neurobiol Exp (Wars) ; 82(3): 273-283, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36214710

RESUMEN

Multiple sclerosis (MS) is the most typical chronic inflammatory, autoimmune demyelinating disease of the central nervous system (CNS) which leads to physical dysfunction and paralysis in patients. A commonly used animal model for this disease is experimental autoimmune encephalomyelitis (EAE). Daphnetin (7,8­dihydroxycoumarin) has been reported to exert various pharmacological activities, such as being neuroprotective and anti­inflammatory, together with having antioxidant, anticancer, and antiviral properties. Eight­week­old C57BL/6 female mice were segregated into 3 groups, namely 1) a control group receiving PBS, 2) a low­dose treatment group receiving 2 mg/kg of daphnetin, and, 3) a high­dose treatment group receiving 8 mg/kg of daphnetin. EAE was induced with a subcutaneous injection of a combination of myelin oligodendrocyte glycoprotein (MOG) and complete Freund's adjuvant. On the day of induction, and again two days later, mice were injected intraperitoneally with pertussis toxin. Histological studies showed low lymphocyte infiltration and demyelination in the high and low dose treated groups. The ratio of spleen Treg cells and the levels of IL­4, IL­10, TGF­ß, and IL­33 enhanced significantly in the treatment group related to the control group. Furthermore, both IL­27 and IL­35 were also enhanced significantly in the treatment group compared to the control group. Moreover, the levels of IFN­Î³, TNF­α, and IL­17 displayed a noticeable reduction in the daphnetin treated group. Daphnetin appears to improve the disease by increasing the expression of anti­inflammatory cytokines and transcription factors (IL­4, IL­10, IL­33, GATA3, TGF­ß, FoxP3), and reducing the production of pro­inflammatory cytokines and transcription factors (IFN­Î³, STAT4, T­bet, IL­17, STAT3, ROR­Î³t, TNF­α).


Asunto(s)
Encefalomielitis Autoinmune Experimental , Umbeliferonas , Animales , Antiinflamatorios , Antioxidantes/metabolismo , Citocinas/metabolismo , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/patología , Femenino , Factores de Transcripción Forkhead/metabolismo , Adyuvante de Freund , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Interleucina-27/metabolismo , Interleucina-33/metabolismo , Interleucina-4/metabolismo , Ratones , Ratones Endogámicos C57BL , Glicoproteína Mielina-Oligodendrócito/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Toxina del Pertussis , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/patología , Células Th17/metabolismo , Células Th17/patología , Factor de Crecimiento Transformador beta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Umbeliferonas/farmacología
5.
Basic Clin Neurosci ; 13(5): 637-646, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37313025

RESUMEN

Introduction: Parkinson disease (PD) results from the destruction of dopaminergic neurons in the brain. This study aimed to investigate the protective effects of natural antioxidants such as caffeic acid phenethyl ester (CAPE) to maintain these neurons. Methods: CAPE is one of the main ingredients of propolis. Intranasal administration of 1-methyl-4-phenyl-2;3;4;6-tetrahydropyridine (MPTP) was used to generate a PD model in rats. A total of 2×bone marrow stem cells (BMSCs) were injected from the tail vein. Behavioral tests, immunohistochemistry, DiI, cresyl fast violet, and TUNEL staining were used to evaluate the rats 2 weeks after treatment. Results: In all treatment groups with stem cells, the DiI staining method revealed that the cells migrated to the substantia nigra pars compacta after injection. Treatment with CAPE significantly protects dopaminergic neurons from MPTP. The highest number of tyrosine hydroxylase (TH) positive neurons was seen in the pre-CAPE+PD+stem cell (administration of CAPE, then the creation of PD, finally injection of stem cells) group. The number of TH+cells in all groups that received CAPE was significant compared to groups that received the stem cells only (P<0.001). Intranasal administration of MPTP significantly increases the number of apoptotic cells. The lowest number of apoptotic cells was in the CAPE+PD+stem cell group. Conclusion: The results showed that the use of CAPE and stem cells in Parkinson rats caused a significant reduction in the apoptotic cells.

6.
Braz. J. Pharm. Sci. (Online) ; 58: e19381, 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1374533

RESUMEN

Abstract 5-fluorouracil (5-FU) has been recognized as an effective medication used to treat colorectal cancer (CRC); however, its administration is facing limitations due to some complications reported. It is also generally accepted that combination therapy is among strategies to improve chemotherapy efficiency. Therefore, chrysin, with its anticancer effects, in combination with 5-FU was investigated in the present study. Azoxymethane (AOM) as a carcinogenic substance along with dextran sodium sulfate (DSS) was additionally utilized to induce CRC in mice. The anticancer effects of chrysin were then evaluated using aberrant crypt foci (ACF) counting and percentage of pathologic lesions in epithelial tissues from distal colon. In this study, cyclooxygenase (COX-2) protein expression was correspondingly explored through immunohistochemistry (IHC). The results revealed that chrysin alone or in combination with 5-FU could decrease ACF counting and percentage of pathologic lesions in comparison with AOM (p<0.05). Moreover, the combination of chrysin (at a dose of 50 mg/kg) with 5-FU reduced COX-2 expression compared with 5-FU alone (p<0.001) or 5-FU in combination with chrysin at a dose of 100 mg/kg (p<0.05). Furthermore, the combined chrysin boosted 5-FU efficiency, so it was suggested as an auxiliary therapy for CRC.

7.
Life Sci ; 276: 119390, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33794252

RESUMEN

AIMS: Currently, the main problems with chemotherapy are its side effects, toxicity, and drug resistance. Propolis has biological activities, such as anti-inflammatory and anti-cancer properties. This study aims to examine the combined effects of 5-fluorouracil (5FU) and propolis on colorectal cancer (CRC) in mouse models. MATERIALS AND METHODS: The chemical composition of ethanolic extract of propolis was determined by gas chromatography-mass spectrometry (GC-MS). In this study, 49 male Balb/c mice (16-20 g) were divided in seven groups as a control group and experimental groups (treated and untreated CRC model [azoxymethane + dextran sodium sulfate]). This study was conducted in 8 weeks. To examine the anti-cancer effects of propolis, the number of aberrant crypt foci (ACF) was counted and the pathological lesions in the distal colonic epithelial tissue were diagnosed. In this study, the expression of beta-catenin (ß-catenin), induced nitric oxide synthase (iNOS) and cyclooxygenase-2 (Cox-2) proteins, which play a major role in the incidence and progression of cancer, were determined. KEY FINDINGS: GC-MS analysis of propolis showed the presence of hydrocarbons, alcohols, ketones, terpenes, phenols, and flavonoids. Administering propolis in combination with 5FU reduced the number of ACFs and pathological lesions in comparison with cancer control groups (p < 0.0001) and 5FU-alone treatment (p < 0.05). The propolis combined with 5FU reduced the expression of Cox-2, iNOS, and ß-catenin proteins. SIGNIFICANCE: The results showed that propolis increased the efficiency of 5FU and could be taken into account as the adjunct therapy for colorectal cancer.


Asunto(s)
Antiinfecciosos/farmacología , Antimetabolitos Antineoplásicos/farmacología , Azoximetano/toxicidad , Neoplasias Colorrectales/tratamiento farmacológico , Sulfato de Dextran/toxicidad , Fluorouracilo/farmacología , Própolis/farmacología , Animales , Carcinógenos/toxicidad , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/patología , Quimioterapia Combinada , Masculino , Ratones , Ratones Endogámicos BALB C
8.
Behav Pharmacol ; 31(7): 641-651, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32826427

RESUMEN

Transient thyroid function abnormalities at birth exhibit intellectual developmental and cognitive disorders in adulthood. Given the well-known effects of physical activity and sex hormones on cognitive functions and brain-derived neurotrophic factor (BDNF), the present study examined the effects of treadmill exercise, sex hormones, and the combined treatment on learning and memory and hippocampal BDNF levels in transient congenital hypothyroid rats. To induce hypothyroidism, 6-propyl-2-thiouracil was added to the drinking water from the 6th day of gestation to the 21st postnatal day (PND). From PNDs 28 to 47, female and male pup rats received 17ß-estradiol and testosterone, respectively, and about 30 min later, they were forced to run on the treadmill for 30 min once a day. On PNDs 48-55, spatial learning and memory of all rats tested in the water maze, which followed by measurement of BDNF in the hippocampus. Results showed that developmental hypothyroidism induced significant deficits in spatial learning and memory and hippocampal BDNF in both male and female rats. In both male and female hypothyroid rats, exercise and exercise plus sex hormones, but not sex hormones alone alleviated learning and memory deficits and all treatments (exercise, sex hormones, and the combined treatment) increased hippocampal BDNF. These disconnects in the effects of exercise, sex hormones and the combined treatment on behavioral and neurochemical outcomes suggest that a neurochemical mechanism other than hippocampal BDNF might contribute in the ameliorating effects of exercise on learning and memory deficits induced by developmental thyroid hormone insufficiency.


Asunto(s)
Cognición/efectos de los fármacos , Hipotiroidismo Congénito/complicaciones , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje Espacial/efectos de los fármacos , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Estradiol/farmacología , Femenino , Hipocampo/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Condicionamiento Físico Animal , Ratas , Ratas Wistar , Testosterona/farmacología
9.
Neurochem Res ; 44(9): 2190-2201, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31414343

RESUMEN

Thyroid disorders impair various functions of the hippocampus where thyroid hormone receptors are localized in the brain. Hyper and hypothyroidism are associated with large changes in brain oxidative stress. Apolipoprotein D (APOD) is a conserved glycoprotein that increased in response to oxidative stress in the brain and has been suggested function as an antioxidant in the brain. Thus, the goal of this work was to explore the effect of maternal hypo- and hyperthyroidism on the Apod expression in the pup's brain regarding changes in oxidative stress. For induction hypo and hyperthyroidism in adult female rats, 100 ppm propylthiouracil (PTU) and 8 ppm levothyroxine administrated 1 month before copulation to the week 3 after delivery in drinking water. The hippocampal region of rat pups was isolated and used for immunohistochemistry and quantitative RT-PCR on postnatal day (PND)5, PND10 and PND20. Results revealed that APOD over-expressed in both hypo- and hyperthyroid groups on PND5, PND10, and PND20. There was a proportional increase between the Apod expression and oxidative stress in the hyperthyroid group but not the hypothyroid in different days. Regarding the wide functions of thyroid hormones, oxidative stress does not suggest to be the only mechanism that involves Apod gene expression in thyroid disturbances.


Asunto(s)
Apolipoproteínas D/metabolismo , Hipocampo/metabolismo , Hipertiroidismo/metabolismo , Hipotiroidismo/metabolismo , Estrés Oxidativo/fisiología , Animales , Animales Recién Nacidos , Apolipoproteínas D/genética , Peso Corporal/efectos de los fármacos , Femenino , Hipocampo/patología , Hipertiroidismo/patología , Hipotiroidismo/patología , Masculino , Neuroprotección/fisiología , Embarazo , ARN Mensajero/metabolismo , Ratas Wistar , Tiroxina/farmacología , Triyodotironina/sangre , Regulación hacia Arriba
10.
Int J Fertil Steril ; 13(3): 196-202, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31310073

RESUMEN

BACKGROUND: L-carnitine (Lc) as a type of flavonoid antioxidants and bone marrow stromal cells (BMSCs) as a type of mesenchymal stem cells may recover damaged ovaries. It seems that Lc has favorable effects on differentiation, increasing lifespan and decreasing apoptosis in BMSCs. The aim of this study was to investigate effects of co-administration of BMSC+Lc on damaged ovaries after creating a chemotherapy model with cyclophosphamide in rats. MATERIALS AND METHODS: In this experimental study, cyclophosphamide was intraperitoneally (IP) injected to forty female wistar rats for 14 days, in terms of chemotherapy-induced ovarian destruction. The rats were then randomly divided into four groups: control, Lc, BMSCs and co-administration of BMSC+Lc. Injection of BMSCs into bilateral ovaries and intraperitoneal injection of Lc were performed individually and together. Four weeks later, levels of serum estradiol (E2) and follicle-stimulating hormone (FSH) using enzyme-linked immunosorbent assay (ELISA) kit, number of ovarian follicles at different stages using hematoxylin and eosin (H and E) staining and expression of ovarian Bcl-2 and Bax proteins using western blot were assessed. RESULTS: Co-administration of BMSC+Lc increased E2 and decreased FSH levels compared to the control group (P<0.001). The number of follicles was higher in the co-administrated group compared to the control group (P<0.001). Co-administration of BMSC+Lc increased Bcl-2 protein level, decreased Bax protein level and increased Bcl-2/Bax ratio (P<0.001). CONCLUSION: The effect of co-administration of BMSC+Lc is probably more effective than the effect of their separate administration on the recovery of damaged ovaries by chemotherapy.

11.
Iran J Med Sci ; 44(2): 135-145, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30936600

RESUMEN

BACKGROUND: Bone marrow stromal cells (BMSCs), as a type of mesenchymal stem cells, and the granulocyte colony-stimulating factor (G-CSF), as a type of growth factor, may recover damaged ovaries. The aim of the present study was to investigate the effects of the coadministration of BMSCs and the G-CSF on damaged ovaries after creating a chemotherapy model with cyclophosphamide (CTX) in rats. METHODS: The present study was performed in Semnan, Iran, in the late 2016 and the early 2017. BMSCs were cultured and were confirmed using the CD markers of stromal cells. Forty female Wistar rats were randomly divided into 4 groups. The rats were injected intraperitoneally with CTX for 14 days to induce chemotherapy and ovarian destruction. Then, the BMSCs were injected into bilateral ovaries and the G-CSF was injected intraperitoneally, individually and together. Four weeks later, the number of ovarian follicles using H&E staining, the number of apoptotic granulosa cells using the TUNEL assay, the number of produced oocytes from the ovaries, and the levels of serum E2 and FSH using an ELISA reader were assessed. Statistical analysis was done using one-way ANOVA with SPSS, version 16.0. RESULTS: The results showed that the effects of the coadministration of 2×106 BMSCs and 70 µg/kg of the G-CSF were significantly more favorable than those in the control group (P<0.001), the BMSC group (P=0.016), and the G-CSF group (P<0.001) on the recovery of damaged ovaries. CONCLUSION: The efficacy of the coadministration of BMSCs and the G-CSF in the recovery of ovaries damaged by chemotherapy was high by comparison with the administration of either of them separately.

12.
Basic Clin Neurosci ; 10(1): 73-84, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31031895

RESUMEN

INTRODUCTION: Based on our previous findings, the treatment of stem cells alone or in combination with thyroid hormone (T3) and mild exercise could effectively reduce the risk of stroke damage in young mice. However, it is unclear whether this treatment is effective in aged or middle-aged mice. Therefore, this study designed to assess whether combination of Bone Marrow Stromal Cells (BMSCs) with T3 and mild treadmill exercise can decrease stroke complications in middle-aged mice. METHODS: Under laser Doppler flowmetry monitoring, transient focal cerebral ischemia was produced by right Middle Cerebral Artery Occlusion (MCAO) for 45 min followed by 7 days of reperfusion in middle-aged mice. BMSCs (1×105) were injected into the right cerebral ventricle 24 h after MCAO, followed by daily injection of triiodothyronine (T3) (20 µg/100 g/d SC) and 6 days of running on a treadmill. Infarct size, neurological function, apoptotic cells and expression levels of Glial Fibrillary Acidic Protein (GFAP) were evaluated 1 week after stroke. RESULTS: Post-ischemic treatment with BMSCs or with T3 and or mild treadmill exercise alone or in combination did not significantly change neurological function, infarct size, and apoptotic cells 7 days after ischemia in middle-aged mice (P>0.05). However, the expression of GFAP significantly reduced after treatment with BMSCs and or T3 (P<0.01). CONCLUSION: Our findings indicate that post-stroke treatment BMSCs with exercise and thyroid hormone cannot reverse neuronal damage 7 days after ischemia in middle-aged mice. These findings further support that age is an important variable in stroke treatment.

13.
Iran J Basic Med Sci ; 22(7): 722-728, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32373292

RESUMEN

OBJECTIVES: Exercise ameliorates the quality of life and reduces the risk of neurological derangements such as Alzheimer's (AD) and Parkinson's disease (PD). Irisin is a product of the physical activity and is a circulating hormone that regulates the energy metabolism in the body. In the nervous system, Irisin influences neurogenesis and neural differentiation in mice. We previously demonstrated that co-treatment of bone marrow stem cells (BMSCs) with a neurotrophic factor reduce Parkinson's symptoms. Our goal in this project was to evaluate whether Irisin with BMSCs can protect the dopaminergic (DA) neurons in PD. MATERIALS AND METHODS: 35 adult male Wistar rat weighing (200-250 g) were chosen. They were separated into five experimental groups (n=7). To create a Parkinson's model, intranasal (IN) administration of the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) was used. The BMSCs (2×106) and Irisin (50 nm/ml) was used for 7 days for treatment after creation of the PD model. After completion of the tests (4 weeks), their brains were used for the TUNEL and immunohistochemical (IHC) assays. RESULTS: One of the important results of this study was that the Irisin induce BMSCs transport into the injured area of the brain. Co-treatment of the Irisin with BMSCs increased tyrosine hydroxylase-positive neurons (TH+) in substantia nigra (SN) and striatum of the PD mice brain. In this group, the number of TUNEL-positive cells significantly decreased. Behavioral symptoms were better in the combination group and Irisin simultaneously. CONCLUSION: Co- treatment of Irisin with BMSCs protects the DA neurons from degeneration and apoptotic process after MPTP injection.

14.
Int J Fertil Steril ; 12(3): 257-262, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29935073

RESUMEN

BACKGROUND: Apigenin is a plant-derived compound belonging to the flavonoids category and bears protective effects on different cells. The aim of this study was to evaluate the effect of apigenin on the number of viable and apoptotic blastomeres, the zona pellucida (ZP) thickness and hatching rate of pre-implantation mouse embryos exposed to H2O2 and actinomycin D. MATERIALS AND METHODS: In this experimental study, 420 two-cell embryos were randomly divided into six groups: i. Control, ii. Apigenin, iii. H2O2, iv. Apigenin+H2O2, v. Actinomycin D, and vi. Apigenin+Actinomycin D. The percentage of blastocysts and hatched blastocysts was calculated. Blastocyst ZP thickness was also measured. In addition, viable blastomeres quantity was counted by Hoechst and propidium iodide staining and the number of apoptotic blastomeres was counted by TUNEL assay. RESULTS: The results of viable and apoptotic blastomeres quantity, the ZP thickness, and the percentage of blastocysts and hatched blastocysts were significantly more favorable in the apigenin group, rather than the control group (P<0.05). The results of the apigenin+H2O2 group were significantly more favorable than the H2O2 group (P<0.05); and the results of apigenin+actinomycin D group were significantly more favorable than actinomycin D group (P<0.05). CONCLUSION: The results suggest that apigenin may protect mouse embryos against H2O2 and actinomycin D. So that it increases the number of viable blastomeres and decreases the number of apoptotic blastomeres, which may cause expanding the blastocysts, thinning of the ZP thickness and increasing the rate of hatching in mouse embryos.

15.
Neurosci Lett ; 683: 33-37, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-29936268

RESUMEN

This study examined the effects of treadmill exercise on the methadone withdrawal -induced locomotor sensitization, the ventral tegmental area (VTA) and ventral pallidum (VP) BDNF levels in morphine withdrawn rats receiving methadone maintenance treatment (MMT). The rats were chronically treated with bi-daily doses (10 mg/kg, at 12 h intervals) of morphine for 14 days. The exercising rats receiving MMT were forced to run on a motorized treadmill for 30 days during morphine withdrawal. Then, rats were exposed to a 14-day methadone withdrawal period, without any exercise and then challenged with morphine (1 mg/kg, ip) and evaluated for locomotor activity. Also, the VTA-VP BDNF levels were assessed before and after receiving MMT. The sedentary morphine-dependent rats receiving MMT and morphine-dependent rats receiving saline challenged to morphine exhibited a higher level of locomotor activity compared to Sal/Sal/Sed group after withdrawal of drug. While, the level of locomotor activity was lower in the D/Meth/Sed than in D/Sal/Sed rats. The VP BDNF level and the locomotors response were higher and lower, respectively in the D/Meth/Sed and D/Sal/Exc than the D/Sal/Sed rats. Exercise had no effect on the locomotors response and the VP BDNF levels in morphine-dependent rats receiving MMT. Our results showed that the sedentary morphine-dependent rats challenged to morphine enhanced the morphine-induced hyperlocomotion, whereas decreased the VP BDNF levels. MMT resulted in a persistent of locomotor sensitization caused by morphine withdrawal, though milder. Exercise had no effect on the locomotors response and the VTA-VP BDNF levels in the D/Meth/Exc.


Asunto(s)
Prosencéfalo Basal/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Prueba de Esfuerzo/métodos , Metadona/uso terapéutico , Dependencia de Morfina/metabolismo , Área Tegmental Ventral/metabolismo , Analgésicos Opioides/farmacología , Analgésicos Opioides/uso terapéutico , Animales , Prosencéfalo Basal/efectos de los fármacos , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Metadona/farmacología , Morfina/efectos adversos , Dependencia de Morfina/terapia , Tratamiento de Sustitución de Opiáceos/métodos , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Resultado del Tratamiento , Área Tegmental Ventral/efectos de los fármacos
16.
Int J Reprod Biomed ; 16(2): 101-108, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29675494

RESUMEN

BACKGROUND: Quercetin is a flavonoid with the ability to improve the growth of embryos in vitro, and actinomycin D is an inducer of apoptosis in embryonic cells. OBJECTIVE: The aim was to evaluate the effect of quercetin on the number of viable and apoptotic cells, the zona pellucida (ZP) thickness and the hatching rate of preimplantation embryos exposed to actinomycin D in mice. MATERIALS AND METHODS: Two-cell embryos were randomly divided into four groups (Control, Quercetin, actinomycin D, and Quercetin + actinomycin D group). Blastocysts percentage, hatched blastocysts, and ZP thickness of blastocysts was measured. The number of blastomeres was counted by Hoechst and propidium iodide staining and the apoptotic cells number was counted by TUNEL assay. RESULTS: The results showed that the use of quercetin significantly improved the growth of embryos compared to the control group (p=0.037). Moreover, quercetin reduced the destructive effects of actinomycin D on the growth of embryos significantly (p=0.026). CONCLUSION: quercetin may protect the embryos against actinomycin D so that increases the number of viable cells and decreases the number of apoptotic cells, which can help the expansion of the blastocysts, thinning of the ZP thickness and increasing the hatching rate in mouse embryos.

17.
Cell J ; 20(1): 10-18, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29308613

RESUMEN

OBJECTIVES: Although stem cell transplantation has beneficial effects on tissue regeneration, but there are still problems such as high cost and safety issues. Since stem cell therapy is largely dependent on paracrine activity, in this study, utilization of transplantation of bone marrow stromal cells (BMSCs)-secretome instead of the cells, into damaged ovaries was evaluated to overcome the limitations of stem cell transplantation. MATERIALS AND METHODS: In this experimental study, BMSCs were cultured and 25-fold concentrated conditioned medium (CM) from BMSCs was prepared. Female rats were injected intraperitoneally with cyclophosphamide (CTX) for 14 days. Then, BMSCs and CM were individually transplanted into bilateral ovaries, and the ovaries were excised after four weeks of treatment. The follicle count was performed using hematoxylin and eosin (H and E) staining and the apoptotic cells were counted using TUNEL assay. Ovarian function was evaluated by monitoring the ability of ovulation and the levels of serum estradiol (E2) and follicle-stimulating hormone (FSH). RESULTS: Evaluation of the ovarian function and structure showed that results of secretome transplantation were almost similar to those of BMSCs transplantation and there was no significant differences between them. CONCLUSIONS: BMSCs-secretome is likely responsible for the therapeutic paracrine effect of BMSCs. Stem cellsecretome is expected to overcome the limitations of stem cell transplantation and become the basis of a novel therapy for ovarian damage.

18.
Brain Res ; 1682: 84-92, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29329984

RESUMEN

The infralimbic (IL) cortex of the medial prefrontal cortex plays an important role in the extinction of fear memory. Also, it has been showed that both brain glucocorticoid and dopamine receptors are involved in many processes such as fear extinction that drive learning and memory; however, the interaction of these receptors in the IL cortex remains unclear. We examined a putative interaction between the effects of glucocorticoid and dopamine receptors stimulation in the IL cortex on fear memory extinction in an auditory fear conditioning paradigm in male rats. Corticosterone (the endogenous glucocorticoid receptor ligand), or RU38486 (the synthetic glucocorticoid receptor antagonist) microinfusion into the IL cortex 10 min before test 1 attenuated auditory fear expression at tests 1-3, suggesting as an enhancement of fear extinction. The effect of corticosterone, but not RU38486 was counteracted by the dopamine D2 receptor antagonist sulpiride pre-treatment administered into the IL (at a dose that failed to alter freezing behavior on its own). In contrast, intra-IL infusion of the dopamine D1 receptor antagonist SCH23390 pre-treatment failed to alter freezing behavior. These findings provide evidence for the involvement of the IL cortex D2 receptors in CORT-induced facilitation of fear memory extinction.


Asunto(s)
Extinción Psicológica/fisiología , Miedo/fisiología , Glucocorticoides/farmacología , Memoria/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Receptores de Dopamina D2/metabolismo , Estimulación Acústica , Animales , Benzazepinas/farmacología , Antagonistas de Dopamina/farmacología , Extinción Psicológica/efectos de los fármacos , Antagonistas de Hormonas/farmacología , Masculino , Memoria/fisiología , Mifepristona/farmacología , Corteza Prefrontal/metabolismo , Ratas , Ratas Wistar , Factores de Tiempo
19.
Metab Brain Dis ; 32(4): 1267-1277, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28547077

RESUMEN

This study examined whether post-stroke bone marrow stromal cells (BMSCs) therapy combined with exercise (EX) and/or thyroid hormone (TH) could reduce brain damage in an experimental ischemic stroke in mice. Focal cerebral ischemia was induced under Laser Doppler Flowmetry (LDF) guide by 45 min of middle cerebral artery occlusion (MCAO), followed by 7 days of reperfusion in albino mice. BMSCs were injected into the right cerebral ventricle 24 h after MCAO, followed by daily injection of T3 (20 µg/100 g weight S.C) and 6 days of running on a treadmill. Infarct size, neurobehavioral test, TUNEL and BrdU positive cells were evaluated at 7 days after MCAO. Treatment with BMSCs and mild EX alone significantly reduced the infarct volume by 23% and 44%, respectively (both, p < 0.001). The BMSCs + TH, BMSCs + EX, and BMSCs + EX + TH combination therapies significantly reduced the infarct volume by 26%, 51%, and 70%, respectively (all, p < 0.001). A significant improvement in the neurobehavioral functioning was observed in the EX, BMSCs + EX, and BMSCs + EX+ TH groups (p < 0.001). The number of TUNEL-positive cells (a marker of apoptosis) was significantly reduced in the EX, BMSCs, BMSCs + EX, BMSCs + TH, and BMSCs + EX + TH groups (all, p < 0.001). Moreover, the combination therapy considerably increased BrdU-labeled cells in the subventricular zone (SVZ) (p < 0.01). Our findings indicated that the combined treatment of BMSCs with mild EX and TH more efficiently reduces the cerebral infarct size after stroke. More likely, these effects mediate via enchaining generation of new neuronal cells and the attenuation of apoptosis in ischemia stroke in young mice.


Asunto(s)
Apoptosis/fisiología , Isquemia Encefálica/terapia , Encéfalo/patología , Trasplante de Células Madre Mesenquimatosas , Condicionamiento Físico Animal/fisiología , Triyodotironina/uso terapéutico , Animales , Isquemia Encefálica/patología , Isquemia Encefálica/fisiopatología , Terapia Combinada , Modelos Animales de Enfermedad , Masculino , Células Madre Mesenquimatosas , Ratones , Resultado del Tratamiento
20.
Cell J ; 19(1): 84-93, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28367419

RESUMEN

OBJECTIVE: Lavender is used in herbal medicine for different therapeutic purposes. Nonetheless, potential therapeutic effects of this plant in ischemic heart disease and its possible mechanisms remain to be investigated. MATERIALS AND METHODS: In this experimental study, lavender oil at doses of 200, 400 or 800 mg/kg was administered through gastric gavage for 14 days before infarct-like myocardial injury (MI). The carotid artery and left ventricle were cannulated to record arterial blood pressure (BP) and cardiac function. At the end of experiment, the heart was removed and histopathological alteration, oxidative stress biomarkers as well as tumor necrosis factor-alpha (TNF-α) level were evaluated. RESULTS: Induction of M.I caused cardiac dysfunction, increased levels of lipid peroxidation, TNF-α and troponin I in heart tissue (P<0.001). Pretreatment with lavender oil at doses of 200 and 400 mg/kg significantly reduced myocardial injury, troponin I and TNF-α. In addition, it improved cardiac function and antioxidant enzyme activity (P<0.01). CONCLUSION: Our finding showed that lavender oil has cardioprotective effect through inhibiting oxidative stress and inflammatory pathway in the rat model with infarct-like MI. We suggest that lavender oil may be helpful in prevention or attenuation of heart injury in patients with high risk of myocardial infarction and/or ischemic heart disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA