Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(6): e0298868, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38843128

RESUMEN

Commercial fisheries along the US West Coast are important components of local and regional economies. They use various fishing gear, target a high diversity of species, and are highly spatially heterogeneous, making it challenging to generate a synoptic picture of fisheries activity in the region. Still, understanding the spatial and temporal dynamics of US West Coast fisheries is critical to meet the US legal mandate to manage fisheries sustainably and to better coordinate activities among a growing number of users of ocean space, including offshore renewable energy, aquaculture, shipping, and interactions with habitats and key non-fishery species such as seabirds and marine mammals. We analyzed vessel tracking data from Vessel Monitoring System (VMS) from 2010 to 2017 to generate high-resolution spatio-temporal estimates of contemporary fishing effort across a wide range of commercial fisheries along the entire US West Coast. We identified over 247,000 fishing trips across the entire VMS data, covering over 25 different fisheries. We validated the spatial accuracy of our analyses using independent estimates of spatial groundfish fisheries effort generated through the NOAA's National Marine Fisheries Service Observer Program. Additionally, for commercial groundfish fisheries operating in federal waters in California, we combined the VMS data with landings and ex-vessel value data from California commercial fisheries landings receipts to generate highly resolved estimates of landings and ex-vessel value, matching over 38,000 fish tickets with VMS data that included 87% of the landings and 76% of the ex-vessel value for groundfish. We highlight fisheries-specific and spatially-resolved patterns of effort, landings, and ex-vessel value, a bimodal distribution of fishing effort with respect to depth, and variable and generally declining effort over eight years. The information generated by our study can help inform future sustainable spatial fisheries management and other activities in the marine environment including offshore renewable energy planning.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Explotaciones Pesqueras/legislación & jurisprudencia , Explotaciones Pesqueras/economía , California , Animales , Conservación de los Recursos Naturales/métodos , Ecosistema , Peces , Navíos
2.
J Environ Manage ; 351: 119735, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38113786

RESUMEN

Understanding and characterizing the spatiotemporal dynamics of fishing fleets is crucial for ecosystem-based fisheries management (EBFM). EBFM must not only account for the sustainability of target species catches, but also for the collateral impacts of fishing operations on habitats and non-target species. Increased rates of large whale entanglements in commercial Dungeness crab fishing gear have made reducing whale-fishery interactions a current and pressing challenge on the U.S. West Coast. While several habitat models exist for different large whale species along the West Coast, less is known about the crab fishery and the degree to which different factors influence the intensity and distribution of aggregate fishing effort. Here, we modeled the spatiotemporal patterns of Dungeness crab fishing effort in Oregon and Washington as a function of environmental, economic, temporal, social, and management related predictor variables using generalized linear mixed effects models. We then assessed the predictive performance of such models and discussed their usefulness in informing fishery management. Our models revealed low between-year variability and consistent spatial and temporal patterns in commercial Dungeness crab fishing effort. However, fishing effort was also responsive to multiple environmental, economic and management cues, which influenced the baseline effort distribution pattern. The best predictive model, chosen through out-of-sample cross-validation, showed moderate predictive performance and relied upon environmental, economic, and social covariates. Our results help fill the current knowledge gap around Dungeness crab fleet dynamics, and support growing calls to integrate fisheries behavioral data into fisheries management and marine spatial planning.


Asunto(s)
Braquiuros , Animales , Ecosistema , Ballenas , Caza , Explotaciones Pesqueras , Conservación de los Recursos Naturales
3.
Conserv Biol ; : e14201, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37855129

RESUMEN

Conservation planning traditionally relies upon static reserves; however, there is increasing emphasis on dynamic management (DM) strategies that are flexible in space and time. Due to its novelty, DM lacks best practices to guide design and implementation. We assessed the effect of planning unit size in a DM tool designed to reduce entanglement of protected whales in vertical ropes of surface buoys attached to crab traps in the lucrative U.S. Dungeness crab (Metacarcinus magister) fishery. We conducted a retrospective analysis from 2009 to 2019 with modeled distributions of blue (Balaenoptera musculus) and humpback (Megaptera novaeangliae) whales and observed fisheries effort and revenue to evaluate the effect of 7 planning unit sizes on DM tool performance. We measured performance as avoided whale entanglement risk and protected fisheries revenue. Small planning units avoided up to $47 million of revenue loss and reduced entanglement risk by up to 25% compared to the large planning units currently in use by avoiding the incidental closure of areas with low biodiversity value and high fisheries revenue. However, large planning units were less affected by an unprecedented marine heat wave in 2014-2016 and by delays in information on the distributions of whales and the fishery. Our findings suggest that the choice of planning unit size will require decision-makers to navigate multiple socioecological considerations-rather than a one-size-fits-all approach-to separate wildlife from threats under a changing climate.


Selección del tamaño de la unidad de planeación en las estrategias dinámicas de manejo para reducir el conflicto humano-fauna Resumen La planeación de la conservación depende por tradición de las reservas estáticas; sin embargo, cada vez hay más énfasis en estrategias de manejo dinámico (MD) que son flexibles con el tiempo y el espacio. Ya que es novedoso, el MD carece de buenas prácticas que guíen el diseño y la implementación. Analizamos el efecto del tamaño de la unidad de planeación en una herramienta de MD diseñada para reducir el número de ballenas que se enredan en las cuerdas verticales de las boyas amarradas a las trampas para cangrejos de la pesquería lucrativa del cangrejo Dungeness (Metacarcinus magister) en los Estados Unidos. Realizamos un análisis retrospectivo de 2009 a 2019 con modelos de distribución de la ballena azul (Balaenoptera musculus) y la ballena jorobada (Megaptera novaeangliae) y observamos los esfuerzos y ganancias de la pesquería para evaluar el efecto del tamaño de siete unidades de planeación sobre el desempeño de una herramienta de MD. Medimos el desempeño como el riesgo de enredamiento evitado y los ingresos protegidos de la pesquería. Las unidades pequeñas de planeación evitaron hasta $47 millones de ingresos perdidos y redujeron el riesgo de enredamiento hasta en 25% en comparación con las unidades grandes que se usan actualmente al evitar el cierre indirecto de áreas con un valor bajo de biodiversidad e ingresos elevados para la pesquería. Sin embargo, las unidades grandes de planeación estuvieron menos afectadas por una ola de calor marino sin precedentes entre 2014 y 2016 y por los retrasos en la información sobre la distribución de las ballenas y la pesquería. Nuestros hallazgos sugieren que la selección del tamaño de la unidad de planeación requerirá que el órgano decisorio navegue múltiples consideraciones socio-ecológicas-en lugar de un enfoque de un-tamaño-para-todos-para separar a la fauna de las amenazas bajo el clima cambiante.

4.
Sci Adv ; 9(33): eadg5468, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37595038

RESUMEN

Climate change drives species distribution shifts, affecting the availability of resources people rely upon for food and livelihoods. These impacts are complex, manifest at local scales, and have diverse effects across multiple species. However, for wild capture fisheries, current understanding is dominated by predictions for individual species at coarse spatial scales. We show that species-specific responses to localized environmental changes will alter the collection of co-occurring species within established fishing footprints along the U.S. West Coast. We demonstrate that availability of the most economically valuable, primary target species is highly likely to decline coastwide in response to warming and reduced oxygen concentrations, while availability of the most abundant, secondary target species will potentially increase. A spatial reshuffling of primary and secondary target species suggests regionally heterogeneous opportunities for fishers to adapt by changing where or what they fish. Developing foresight into the collective responses of species at local scales will enable more effective and tangible adaptation pathways for fishing communities.


Asunto(s)
Cambio Climático , Explotaciones Pesqueras , Animales , Aclimatación , Alimentos , Oxígeno
5.
PLoS One ; 17(8): e0272120, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35976855

RESUMEN

Climate change is already impacting coastal communities, and ongoing and future shifts in fisheries species productivity from climate change have implications for the livelihoods and cultures of coastal communities. Harvested marine species in the California Current Large Marine Ecosystem support U.S. West Coast communities economically, socially, and culturally. Ecological vulnerability assessments exist for individual species in the California Current but ecological and human vulnerability are linked and vulnerability is expected to vary by community. Here, we present automatable, reproducible methods for assessing the vulnerability of U.S. West Coast fishing dependent communities to climate change within a social-ecological vulnerability framework. We first assessed the ecological risk of marine resources, on which fishing communities rely, to 50 years of climate change projections. We then combined this with the adaptive capacity of fishing communities, based on social indicators, to assess the potential ability of communities to cope with future changes. Specific communities (particularly in Washington state) were determined to be at risk to climate change mainly due to economic reliance on at risk marine fisheries species, like salmon, hake, or sea urchins. But, due to higher social adaptive capacity, these communities were often not found to be the most vulnerable overall. Conversely, certain communities that were not the most at risk, ecologically and economically, ranked in the category of highly vulnerable communities due to low adaptive capacity based on social indicators (particularly in Southern California). Certain communities were both ecologically at risk due to catch composition and socially vulnerable (low adaptive capacity) leading to the highest tier of vulnerability. The integration of climatic, ecological, economic, and societal data reveals that factors underlying vulnerability are variable across fishing communities on the U.S West Coast, and suggests the need to develop a variety of well-aligned strategies to adapt to the ecological impacts of climate change.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Explotaciones Pesqueras , Humanos , Caza , Salmón
6.
Proc Biol Sci ; 289(1976): 20220526, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35703054

RESUMEN

A major challenge in sustainability science is identifying targets that maximize ecosystem benefits to humanity while minimizing the risk of crossing critical system thresholds. One critical threshold is the biomass at which populations become so depleted that their population growth rates become negative-depensation. Here, we evaluate how the value of monitoring information increases as a natural resource spends more time near the critical threshold. This benefit emerges because higher monitoring precision promotes higher yield and a greater capacity to recover from overharvest. We show that precautionary buffers that trigger increased monitoring precision as resource levels decline may offer a way to minimize monitoring costs and maximize profits. In a world of finite resources, improving our understanding of the trade-off between precision in estimates of population status and the costs of mismanagement will benefit stakeholders that shoulder the burden of these economic and social costs.


Asunto(s)
Ecosistema , Explotaciones Pesqueras , Biomasa , Conservación de los Recursos Naturales
7.
Restor Ecol ; 30(8): e13652, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36589387

RESUMEN

Restoration of degraded coastal and estuarine habitats owing to human activities is a major global concern. In Puget Sound, Washington, U.S.A., removal of hard armor from beaches and intertidal zones has become a priority for state and local agencies. However, the effectiveness of these shoreline restoration programs for subtidal habitats and fish is unknown. We surveyed six restoration sites in Puget Sound over 2 years to evaluate associations between shoreline restoration and subtidal fish abundance. We measured the abundance of juvenile salmonids and forage fishes along armored, restored, and reference shorelines. Bayesian generalized linear models showed limited support for associations between shoreline restoration and these fishes in the 3-7 years since armor removal. Pacific herring were more abundant at reference shorelines; the shoreline effect for surf smelt varied by survey site. Shoreline restoration was not an important predictor of salmonid abundance; the best models for Chinook and chum salmon included predictors for survey site and eelgrass, respectively. The retention of survey site in several species' top models reveals the influence of the broader landscape context. We also found seasonal variation in abundance for chum salmon and surf smelt. Our results suggest that juvenile forage fish and salmonids in estuaries likely have unique responses to shoreline features, and that the positive effects of armor removal either do not extend into subtidal areas or are not detectable at local scales. To be most effective, coastal restoration programs should consider broader landscape patterns as well as species-specific habitat needs when prioritizing investments.

8.
Proc Biol Sci ; 288(1964): 20211607, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34847764

RESUMEN

Despite the increasing frequency and magnitude of extreme climate events, little is known about how their impacts flow through social and ecological systems or whether management actions can dampen deleterious effects. We examined how the record 2014-2016 Northeast Pacific marine heatwave influenced trade-offs in managing conflict between conservation goals and human activities using a case study on large whale entanglements in the U.S. west coast's most lucrative fishery (the Dungeness crab fishery). We showed that this extreme climate event diminished the power of multiple management strategies to resolve trade-offs between entanglement risk and fishery revenue, transforming near win-win to clear win-lose outcomes (for whales and fishers, respectively). While some actions were more cost-effective than others, there was no silver-bullet strategy to reduce the severity of these trade-offs. Our study highlights how extreme climate events can exacerbate human-wildlife conflict, and emphasizes the need for innovative management and policy interventions that provide ecologically and socially sustainable solutions in an era of rapid environmental change.


Asunto(s)
Animales Salvajes , Explotaciones Pesqueras , Animales , Clima , Conservación de los Recursos Naturales , Ecosistema , Humanos , Ballenas
9.
PLoS One ; 16(12): e0261202, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34972116

RESUMEN

The unusual blue color polymorphism of lingcod (Ophiodon elongatus) is the subject of much speculation but little empirical research; ~20% of lingcod individuals exhibit this striking blue color morph, which is discrete from and found within the same populations as the more common brown morph. In other species, color polymorphisms are intimately linked with host-parasite interactions, which led us to ask whether blue coloration in lingcod might be associated with parasitism, either as cause or effect. To test how color and parasitism are related in this host species, we performed parasitological dissection of 89 lingcod individuals collected across more than 26 degrees of latitude from Alaska, Washington, and California, USA. We found that male lingcod carried 1.89 times more parasites if they were blue than if they were brown, whereas there was no difference in parasite burden between blue and brown female lingcod. Blue individuals of both sexes had lower hepatosomatic index (i.e., relative liver weight) values than did brown individuals, indicating that blueness is associated with poor body condition. The immune systems of male vertebrates are typically less effective than those of females, due to the immunocompromising properties of male sex hormones; this might explain why blueness is associated with elevated parasite burdens in males but not in females. What remains to be determined is whether parasites induce physiological damage that produces blueness or if both blue coloration and parasite burden are driven by some unmeasured variable, such as starvation. Although our study cannot discriminate between these possibilities, our data suggest that the immune system could be involved in the blue color polymorphism-an exciting jumping-off point for future research to definitively identify the cause of lingcod blueness and a hint that immunocompetence and parasitism may play a role in lingcod population dynamics.


Asunto(s)
Parásitos/fisiología , Perciformes/genética , Perciformes/parasitología , Pigmentación/genética , Polimorfismo Genético , Animales , Femenino , Geografía , Modelos Lineales , Masculino , Estados Unidos
10.
J Anim Ecol ; 90(11): 2692-2703, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34553382

RESUMEN

Environmental forces can create spatially synchronous dynamics among nearby populations. However, increased climate variability, driven by anthropogenic climate change, will likely enhance synchrony among spatially disparate populations. Population synchrony may lead to greater fluctuations in abundance, but the consequences of population synchrony across multiple scales of biological organization, including impacts to putative competitors, dependent predators or human communities, are rarely considered in this context. Chinook salmon Oncorhynchus tshawytscha stocks distribute across the Northeast Pacific, creating spatially variable portfolios that support large ocean fisheries and marine mammal predators, such as killer whales Orcinus orca. We rely on a multi-population model that simulates Chinook salmon ocean distribution and abundance to understand spatial portfolios, or variability in abundance within and among ocean distribution regions, of Chinook salmon stocks across 17 ocean regions from Southeast Alaska to California. We found the expected positive correlation between the number of stocks in an ocean region and spatial portfolio strength; however, increased demographic synchrony eroded Chinook salmon spatial portfolios in the ocean. Moreover, we observed decreased resource availability within ocean fishery management jurisdictions but not within killer whale summer habitat. We found a strong portfolio effect across both Southern Resident and Northern Resident killer whale habitats that was relatively unaffected by increased demographic synchrony, likely a result of the large spatial area included in these habitats. However, within the areas of smaller fishing management jurisdictions we found a weakening of Chinook salmon portfolios and increased but inconsistent likelihood of low abundance years as demographic synchrony increased. We suggest that management and conservation actions that reduce spatial synchrony can enhance short-term ecosystem resilience by promoting the stabilizing effect multiple stocks have on aggregate Chinook salmon populations and overall resource availability.


Asunto(s)
Ecosistema , Orca , Animales , Explotaciones Pesqueras , Salmón
11.
Ecol Appl ; 31(6): e02367, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33938605

RESUMEN

Outcomes of management efforts to recover or restore populations of harvested species can be highly dependent on environmental and community context. Predator-prey interactions can alter recovery trajectories, and the timing of management actions within multi-trophic level harvest scenarios may influence the dynamics of recovery and lead to management trade-offs. Recent work using a generalist predator-prey model suggests that management promoting synchronized recovery of predators and prey leads to faster and less variable recovery trajectories than sequential recovery (predator or prey first). However, more complex communities may require different management actions to minimize recovery time and variability. Here, we use a tri-trophic level rocky reef community dynamics model with size-structure and fisheries at multiple trophic levels to investigate the importance of three ecological processes to recovery of fished communities: (1) size-structured predation, (2) non-consumptive effects of predators on prey behavior, and (3) varying levels of recruitment. We also test the effects of initiating recovery from community states associated with varying degrees of fishery-induced degradation and develop a simulation in which the basal resource (kelp) is harvested. In this system, a predator-first closure generally leads to the least volatile and quickest recovery, whether from a kelp forest, urchin barren, or intermediate community state. The benefits gained by selecting this strategy are magnified when recovering from the degraded community, the urchin barren, because initial conditions in the degraded state lead to lengthy recovery times. However, the shape of the size-structured predation relationship can strongly affect recovery volatility, where the differences between alternate management strategies are negated with size-independent predation. External recruitment reduces return times by bolstering the predatory lobster population. These results show that in a tightly linked tri-trophic level food web with top-down control, a predator-first fishery closure can be the most effective strategy to reduce volatility and shorten recovery, particularly when the system is starting from the degraded community state. Given the ubiquity of top predator loss across many ecosystems, we highlight the value of incorporating insights from community ecology into ecosystem management.


Asunto(s)
Kelp , Animales , Ecosistema , Explotaciones Pesqueras , Cadena Alimentaria , Bosques , Conducta Predatoria
12.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33397723

RESUMEN

Climate shocks can reorganize the social-ecological linkages in food-producing communities, leading to a sudden loss of key products in food systems. The extent and persistence of this reorganization are difficult to observe and summarize, but are critical aspects of predicting and rapidly assessing community vulnerability to extreme events. We apply network analysis to evaluate the impact of a climate shock-an unprecedented marine heatwave-on patterns of resource use in California fishing communities, which were severely affected through closures of the Dungeness crab fishery. The climate shock significantly modified flows of users between fishery resources during the closures. These modifications were predicted by pre-shock patterns of resource use and were associated with three strategies used by fishing community member vessels to respond to the closures: temporary exit from the food system, spillover of effort from the Dungeness crab fishery into other fisheries, and spatial shifts in where crab were landed. Regional differences in resource use patterns and vessel-level responses highlighted the Dungeness crab fishery as a seasonal "gilded trap" for northern California fishing communities. We also detected disparities in climate shock response based on vessel size, with larger vessels more likely to display spatial mobility. Our study demonstrates the importance of highly connected and decentralized networks of resource use in reducing the vulnerability of human communities to climate shocks.


Asunto(s)
Cambio Climático/economía , Conservación de los Recursos Naturales/métodos , Explotaciones Pesqueras/tendencias , Animales , Braquiuros , Clima , Cambio Climático/estadística & datos numéricos , Conservación de los Recursos Naturales/tendencias , Ecosistema , Explotaciones Pesqueras/economía , Humanos , Alimentos Marinos , Mariscos , Estados Unidos
13.
Glob Chang Biol ; 26(9): 4785-4799, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32691514

RESUMEN

Dramatic coral loss has significantly altered many Caribbean reefs, with potentially important consequences for the ecological functions and ecosystem services provided by reef systems. Many studies examine coral loss and its causes-and often presume a universal decline of ecosystem services with coral loss-rather than evaluating the range of possible outcomes for a diversity of ecosystem functions and services at reefs varying in coral cover. We evaluate 10 key ecosystem metrics, relating to a variety of different reef ecosystem functions and services, on 328 Caribbean reefs varying in coral cover. We focus on the range and variability of these metrics rather than on mean responses. In contrast to a prevailing paradigm, we document high variability for a variety of metrics, and for many the range of outcomes is not related to coral cover. We find numerous "bright spots," where herbivorous fish biomass, density of large fishes, fishery value, and/or fish species richness are high, despite low coral cover. Although it remains critical to protect and restore corals, understanding variability in ecosystem metrics among low-coral reefs can facilitate the maintenance of reefs with sustained functions and services as we work to restore degraded systems. This framework can be applied to other ecosystems in the Anthropocene to better understand variance in ecosystem service outcomes and identify where and why bright spots exist.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Benchmarking , Región del Caribe , Ecosistema , Peces , Indias Occidentales
14.
Glob Chang Biol ; 26(5): 2854-2866, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32189441

RESUMEN

The Anthropocene has brought substantial change to ocean ecosystems, but whether this age will bring more or less marine disease is unknown. In recent years, the accelerating tempo of epizootic and zoonotic disease events has made it seem as if disease is on the rise. Is this apparent increase in disease due to increased observation and sampling effort, or to an actual rise in the abundance of parasites and pathogens? We examined the literature to track long-term change in the abundance of two parasitic nematode genera with zoonotic potential: Anisakis spp. and Pseudoterranova spp. These anisakid nematodes cause the disease anisakidosis and are transmitted to humans in undercooked and raw marine seafood. A total of 123 papers published between 1967 and 2017 met our criteria for inclusion, from which we extracted 755 host-parasite-location-year combinations. Of these, 69.7% concerned Anisakis spp. and 30.3% focused on Pseudoterranova spp. Meta-regression revealed an increase in Anisakis spp. abundance (average number of worms/fish) over a 53 year period from 1962 to 2015 and no significant change in Pseudoterranova spp. abundance over a 37 year period from 1978 to 2015. Standardizing changes to the period of 1978-2015, so that results are comparable between genera, we detected a significant 283-fold increase in Anisakis spp. abundance and no change in the abundance of Pseudoterranova spp. This increase in Anisakis spp. abundance may have implications for human health, marine mammal health, and fisheries profitability.


Asunto(s)
Anisakis , Ascaridoidea , Animales , Ecosistema , Peces , Humanos , Larva , Zoonosis
15.
Ecol Appl ; 30(3): e02051, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31820525

RESUMEN

Unanticipated declines among exploited species have commonly occurred despite harvests that appeared sustainable prior to collapse. This is particularly true in the oceans where spatial scales of management are often mismatched with spatially complex metapopulations. We explore causes, consequences, and potential solutions for spatial mismatches in harvested metapopulations in three ways. First, we generate novel theory illustrating when and how harvesting metapopulations increases spatial variability and in turn masks local-scale volatility. Second, we illustrate why spatial variability in harvested metapopulations leads to negative consequences using an empirical example of a Pacific herring metapopulation. Finally, we construct a numerical management strategy evaluation model to identify and highlight potential solutions for mismatches in spatial scale and spatial variability. Our results highlight that spatial complexity can promote stability at large scales, however, ignoring spatial complexity produces cryptic and negative consequences for people and animals that interact with resources at small scales. Harvesting metapopulations magnifies spatial variability, which creates discrepancies between regional and local trends while increasing risk of local population collapses. Such effects asymmetrically impact locally constrained fishers and predators, which are more exposed to risks of localized collapses. Importantly, we show that dynamically optimizing harvest can minimize local risk without sacrificing yield. Thus, multiple nested scales of management may be necessary to avoid cryptic collapses in metapopulations and the ensuing ecological, social, and economic consequences.


Asunto(s)
Ecosistema , Peces , Animales , Humanos , Océanos y Mares , Dinámica Poblacional
16.
Science ; 363(6425)2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30679339

RESUMEN

Growing scientific awareness, strong regulations, and effective management have begun to fulfill the promise of recovery in the ocean. However, many efforts toward ocean recovery remain unsuccessful, in part because marine ecosystems and the human societies that depend upon them are constantly changing. Furthermore, recovery efforts are embedded in marine social-ecological systems where large-scale dynamics can inhibit recovery. We argue that the ways forward are to (i) rethink an inclusive definition of recovery that embraces a diversity of stakeholder perspectives about acceptable recovery goals and ecosystem outcomes; (ii) encourage research that enables anticipation of feasible recovery states and identifies pathways toward resilient ecosystems; and (iii) adopt policies that are sufficiently nimble to keep pace with rapid change and governance that works seamlessly from local to regional scales. Application of these principles can facilitate successful recoveries in a world where environmental conditions and social imperatives are constantly shifting.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Política Ambiental , Restauración y Remediación Ambiental , Océanos y Mares , Humanos
17.
Front Psychol ; 9: 2074, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30420824

RESUMEN

Unprecedented rates of urbanization are changing our understanding of the ways in which children build connections to the natural world, including the importance of educational settings in affecting this relationship. In addition to influencing human-nature connection, greenspace around school grounds has been associated with benefits to students' cognitive function. Questions remain regarding the size of this benefit relative to other factors, and which features of greenspace are responsible for these effects. We conducted a large-scale correlative study subsampling elementary schools (n = 495) in ecologically, socially and economically diverse California. After controlling for common educational determinants (e.g., socio-economic status, race/ethnicity, student teacher ratio, and gender ratio) we found a significant, positive association between test scores and tree and shrub cover within 750 and 1000 m of urban schools. Tree and shrub cover was not associated with test scores in rural schools or five buffers closer to urban schools (10, 50, 100, 300, and 500 m). Two other greenspace variables (NDVI and agricultural area) were not associated with test performance at any of the analyzed buffer distances for rural or urban schools. Minority representation had the largest effect size on standardized test scores (8.1% difference in scores with 2SD difference in variable), followed by tree and shrub cover around urban schools, which had a large effect size (2.9-3.0% at 750 and 1000 m) with variance from minority representation and socioeconomic status (effect size 2.4%) included. Within our urban sample, average tree-cover schools performed 4.2% (3.9-4.4, and 95% CI) better in terms of standardized test scores than low tree-cover urban schools. Our findings support the conclusion that neighborhood-scale (750-1000 m) urban tree and shrub cover is associated with school performance, and indicate that this element of greenspace may be an important factor to consider when studying the cognitive impacts of the learning environment. These results support the design of experimental tests of tree planting interventions for educational benefits.

18.
Oecologia ; 188(4): 1105-1119, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30311056

RESUMEN

The recovery of predators has the potential to restore ecosystems and fundamentally alter the services they provide. One iconic example of this is keystone predation by sea otters in the Northeast Pacific. Here, we combine spatial time series of sea otter abundance, canopy kelp area, and benthic invertebrate abundance from Washington State, USA, to examine the shifting consequences of sea otter reintroduction for kelp and kelp forest communities. We leverage the spatial variation in sea otter recovery to understand connections between sea otters and the kelp forest community. Sea otter increases created a pronounced decline in sea otter prey-particularly kelp-grazing sea urchins-and led to an expansion of canopy kelps from the late 1980s until roughly 2000. However, while sea otter and kelp population growth rates were positively correlated prior to 2002, this association disappeared over the last two decades. This disconnect occurred despite surveys showing that sea otter prey have continued to decline. Kelp area trends are decoupled from both sea otter and benthic invertebrate abundance at current densities. Variability in kelp abundance has declined in the most recent 15 years, as it has the synchrony in kelp abundance among sites. Together, these findings suggest that initial nearshore community responses to sea otter population expansion follow predictably from trophic cascade theory, but now, other factors may be as or more important in influencing community dynamics. Thus, the utility of sea otter predation in ecosystem restoration must be considered within the context of complex and shifting environmental conditions.


Asunto(s)
Kelp , Nutrias , Animales , Ecosistema , Cadena Alimentaria , Bosques , Washingtón
19.
Ambio ; 47(4): 493-503, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29127669

RESUMEN

Conservation efforts tend to focus on the direct impacts humans have on their surrounding environment; however there are also many ways in which people indirectly affect ecosystems. Recent research on ecological subsidies-the transfer of energy and nutrients from one ecosystem to another-has highlighted the importance of nutrient exchange for maintaining productivity and diversity at a landscape scale, while also pointing toward the fragility of ecotones and vulnerability of subsidies to human activities. We review the recent literature on landscape connectivity and ecosystem subsidies from aquatic systems to terrestrial systems. Based on this review, we propose a conceptual model of how human activities may alter or eliminate the flow of energy and nutrients between ecosystems by influencing the delivery of subsidies along the pathway of transfer. To demonstrate the utility of this conceptual model, we discuss it in the context of case studies of subsidies derived from salmon, marine mammals, sea turtles, sea birds, and shoreline debris. Subsidy restoration may require a different set of actions from simply reversing the pathway of degradation. We suggest that effective restoration and conservation efforts will require a multifaceted approach, targeting many steps along the subsidy transfer pathway, to address these issues.


Asunto(s)
Conservación de los Recursos Naturales , Actividades Humanas , Animales , Ecología , Ecosistema , Agua Dulce , Humanos , Salmón
20.
Nat Ecol Evol ; 1(4): 68, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28812672

RESUMEN

One of the twenty-first century's greatest environmental challenges is to recover and restore species, habitats and ecosystems. The decision about how to initiate restoration is best-informed by an understanding of the linkages between ecosystem components and, given these linkages, an appreciation of the consequences of choosing to recover one ecosystem component before another. However, it remains difficult to predict how the sequence of species' recoveries within food webs influences the speed and trajectory of restoration, and what that means for human well-being. Here, we develop theory to consider the ecological and social implications of synchronous versus sequential (species-by-species) recovery in the context of exploited food webs. A dynamical systems model demonstrates that synchronous recovery of predators and prey is almost always more efficient than sequential recovery. Compared with sequential recovery, synchronous recovery can be twice as fast and produce transient fluctuations of much lower amplitude. A predator-first strategy is particularly slow because it counterproductively suppresses prey recovery. An analysis of real-world predator-prey recoveries shows that synchronous and sequential recoveries are similarly common, suggesting that current practices are not ideal. We highlight policy tools that can facilitate swift and steady recovery of ecosystem structure, function and associated services.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA