Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(30): 32745-32759, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39100302

RESUMEN

The release of palladium nanoparticles (PdNPs) from autocatalytic converters has raised concerns regarding public health and the environment due to their emergence as anthropogenic contaminants. With growing vehicular population, there is an urgent need for comprehensive toxicological studies of PdNPs to mitigate their risk. The present study aims to investigate the effects of spherical PdNPs with average sizes of 20 and 80 nm, as well as Pd nanorods, on the lung function of female Wistar rats following oral exposure to environmentally relevant doses (1 and 10 µg/kg) over a period of 28 days. Various biological parameters were evaluated, including liver and kidney biochemical changes, lung oxidative stress markers (SOD, CAT, GSH, LPO), lung inflammatory markers (IL-1ß, IL-8, IL-6, and TNF-α), and histopathological alterations in the lungs. Additionally, the potential mitigating effects of naringin on PdNPs-induced toxicity were examined. The results demonstrate a significant increase in oxidative stress, the onset of inflammation, and histological changes in lung alveolar sacs upon exposure to all tested particles. Specifically, 20@PdNPs and PdNRs exhibited higher cytotoxicity and pro-inflammatory properties compared to 80@PdNPs. Naringin effectively attenuated the pulmonary toxicity induced by PdNPs by modulating oxidative and inflammatory pathways. These findings contribute to the sustainable development of PdNPs for their future applications in the biomedical and environmental sectors, ensuring the advancement of safe and sustainable nanotechnology.

2.
J Biomol Struct Dyn ; : 1-18, 2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37517055

RESUMEN

A series of halogen-substituted aurone derivatives (2a-k) were synthesized and evaluated for an anti-proliferative study against NCI 60 cancer cell line panel and showed that most of the compounds predominantly exhibited promising activity against MCF-7. Compound 2e exhibited promising anticancer activity against the MCF-7 cancer cell line with 84.98% percentage growth inhibition in a single dose assay of 10 µM with an IC50 value of 8.157 ± 0.713 µM. In apoptotic assay, the effect of compound 2e on the cell cycle progression indicated that exposure of MCF-7 cells to compound 2e induced a significant disruption in the cell cycle profile including a time-dependent decrease in the cell population at G0/G1 and G2/M phase and arrests the cell cycle at the S phase. In silico, molecular docking ADME and toxicity studies of all compounds were also carried out. The docking study revealed that all the aurone derivatives displayed good docking scores ranging from -7.066 to -8.573. The results of Molecular Electrostatic Potential Mapping (MESP) and Density Functional Theory (DFT) studies of the most active compound 2e and least active compound 2k also favoured the experimental results.

3.
J Biomol Struct Dyn ; 41(22): 13466-13487, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36856061

RESUMEN

A series of novel 5-chloro-6-methylaurone derivatives (6a-p) were synthesized and characterized by various spectroscopic techniques. The synthesized compounds were tested for anticancer activity against 60-human cancer cell line panel derived from nine cancer types at NCI, Bethesda, USA. Among the synthesized compounds, six compounds (6e, 6f, 6h, 6i, 6k and 6 m) exhibited growth inhibition and cytotoxic activity against various human cancer cell lines in one-dose data. The most potent compound among the series, 6i was active against 55 out of 60 human cancer cell lines. Compound 6i showed remarkable % growth inhibition and cytotoxicity against various cancer cell lines exhibiting % GI in the range 36.05-199.03. The compound 6i was further evaluated for five dose assay and exhibited GI50 1.90 µM and 2.70 µM against melanoma and breast cancer cell lines respectively. Further evaluation of 6i for five-dose assay exhibited a diverse spectrum of anti-cancer activity towards all the 60 human cancer cell line panel with the selectivity index ratio ranging 0.854-1.42 and 0.66-1.35 for GI50 and TGI respectively. Based on one-dose and five-dose data compound 6i was further evaluated for cell apoptosis against MDA-MB-468 breast cancer cell line and was found to induce early apoptosis in cells explaining its mode of action. The in-silico studies for the synthesized compounds as LSD1 inhibitors (2H94) have shown better docking score and binding energy comparable to vafidemstat. All the compounds followed Lipinski rule of five. These findings concluded that the compound 6i could lead to the development of a promising therapeutic anticancer agent.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Relación Estructura-Actividad , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular , Simulación del Acoplamiento Molecular , Antineoplásicos/química , Estructura Molecular
4.
J Enzyme Inhib Med Chem ; 38(1): 2189126, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36950918

RESUMEN

A series of 20 newly designed (E)-1-(4-sulphamoylphenylethyl)-3-arylidene-5-aryl-1H-pyrrol-2(3H)-ones was synthesised and assessed as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors towards four human isoforms of pharmaceutical interest, that is, hCA I, II, IX and XII. The compounds displayed low to high nanomolar potency against all the isoforms. Introducing strong electron withdrawing groups at the para position of the arylidene ring increased the binding affinity to the enzyme. All compounds showed acceptable pharmacokinetic range and physicochemical characteristics as determined by computational ADMET analysis. Density Functional Theory (DFT) calculations of 3n were carried to gain understanding on the stability of the E and Z isomers. The energy values clearly indicate the stability of E isomer over Z isomer by -8.2 kJ mol-1. Our findings indicate that these molecules are useful as leads for discovering new CA inhibitors.


Asunto(s)
Antígenos de Neoplasias , Anhidrasas Carbónicas , Humanos , Anhidrasa Carbónica IX , Antígenos de Neoplasias/metabolismo , Inhibidores de Anhidrasa Carbónica/química , Anhidrasas Carbónicas/metabolismo , Modelos Teóricos , Relación Estructura-Actividad , Estructura Molecular
5.
ACS Omega ; 8(7): 6650-6662, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36844525

RESUMEN

Six 1,4-benzothiazin-3-ones (2a-f) and four benzothiazinyl acetate derivatives (3a-d) were synthesized and characterized by various spectroscopic methods, namely, 1H NMR, 13C NMR, IR, MS, and elemental analysis. The cytotoxic effects of the compounds were assessed against MCF-7, a human breast cancer cell line, along with their anti-inflammatory activity. Molecular docking studies performed against the VEGFR2 kinase receptor displayed a common binding orientation of the compounds in the catalytic binding pocket of the receptor. The generalized Born surface area (GBSA) studies of compound 2c with the highest docking score also proved its stability in binding to the kinase receptor. Compounds 2c and 2b showed better results against VEGFR2 kinase with IC50 values of 0.0528 and 0.0593 µM, respectively, compared to sorafenib. All of the compounds (2a-f and 3a-d) showed effective growth inhibition having (IC50) values of 2.26, 1.37, 1.29, 2.30, 4.98, 3.7, 5.19, 4.50, 4.39, and 3.31 µM, respectively, against the MCF-7 cell line compared to standard 5-fluorouracil (IC50 = 7.79 µM). However, compound 2c displayed remarkable cytotoxic activity (IC50 = 1.29 µM), suggesting it as a lead compound in the cytotoxic assay. Additionally, compounds 2c and 2b showed better results against VEGFR2 kinase with IC50 values of 0.0528 and 0.0593 µM, respectively, compared to sorafenib. It also inhibited hemolysis by stabilizing the membrane comparable to that of diclofenac sodium, a standard used in the human red blood cell membrane stabilization assay and hence can act as a template for designing novel anticancer and anti-inflammatory agents.

6.
Eur J Pharmacol ; 944: 175583, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36764352

RESUMEN

OBJECTIVES: Fisetin is a flavonoid molecule known to be neuroprotective by its multiple mechanisms. The present study was designed to explore the effect of fisetin in the pentylenetetrazole (PTZ) kindling-induced cognitive dysfunction in mice. METHODS: Kindling was established by the intraperitoneal administration of PTZ in a subconvulsive dose (25 mg/kg). Mice were administered fisetin (5, 10, and 20 mg/kg, p.o.) to study its probable cognition-enhancing effect. The kindled mice were evaluated for cognition using behavioral tests-elevated plus maze and passive avoidance response. Then, the oxidative stress markers, gene expressions and neurotransmitters levels were estimated in the hippocampus and cortex of mice. RESULTS: Passive avoidance response and elevated plus maze paradigms showed that fisetin administration improved the cognitive function in kindled mice. The increased levels of lipid peroxidation and protein carbonyl were modulated upon fisetin administration through increasing the levels of antioxidants (reduced glutathione, glutathione reductase, glutathione peroxidase, superoxide dismutase, and catalase) in the hippocampus and cortex of kindled mice. Upregulated gene expressions of cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) were observed in the hippocampus and cortex of fisetin-administered mice which play a crucial role in cognitive function. Furthermore, alterations of neurotransmitter levels (dopamine, GABA, and glutamate) and acetylcholinesterase (AchE) were ameliorated by fisetin administration in the hippocampus and cortex of kindled mice. CONCLUSION: Our findings suggest a therapeutic potential of fisetin against cognitive dysfunction associated with PTZ-induced kindling.


Asunto(s)
Disfunción Cognitiva , Excitación Neurológica , Ratones , Animales , Pentilenotetrazol/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Neuroprotección , Acetilcolinesterasa/metabolismo , Disfunción Cognitiva/metabolismo , Cognición , Estrés Oxidativo , Hipocampo
7.
ACS Omega ; 8(2): 2227-2236, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36687096

RESUMEN

Dementia or the loss of cognitive functioning is one of the major health issues in elderly people. Alzheimer's disease (AD) is one of the common forms of dementia. Treatment chiefly involves the use of acetylcholinesterase (AChE) inhibitors in AD. However, oxidative stress has also been found to be involved in the proliferation of the disease. Magnoflorine is one of the active compounds of Coptidis Rhizoma and has high anti-oxidative properties. Active principle-loaded nanoparticles have shown increased efficiency for neurodegenerative diseases due to their ability to cross the blood-brain barrier more easily. An in vitro study involving magnoflorine-loaded chitosan collagen nanocapsules (MF-CCNc) has shown them to possess inhibitory effects against oxidative stress and to some extent on AChE as well. In the current study, both nootropic and anti-amnesic effects of magnoflorine and MF-CCNc on scopolamine-induced amnesia in rats were evaluated. The treatment was done intraperitoneally (i.p.) once daily for 17 consecutive days with MF-CCNc (0.25, 0.5, and 1 mg), magnoflorine (1 mg), and donepezil (1 mg). To induce amnesia, hence, cognitive deficit rats were induced with scopolamine (1 mg/kg) daily for the last 9 days. Novel object recognition (NOR) and elevated plus maze (EPM) behavioral analysis were done to assess memory functioning. Hippocampal tissues were extracted to study the effect on biochemicals (AChE, MDA, SOD, and CAT), pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α), and immunohistochemistry (brain-derived neurotrophic factor (BDNF) and DCX). MF-CCNc showed memory-enhancing effects in nootropic as well as chronic scopolamine-treated rats in NOR and an increase in inflexion ratio in EPM. MF-CCNc reduced the levels of AChE and MDA while increasing SOD and CAT levels in the hippocampus. MF-CCNc further lowered the levels of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α. These nanocapsules further increased the expression of BDNF and DCX that are necessary for adult neurogenesis. From the research findings, it can be concluded that MF-CCNc has high anti-amnesic properties and could be a promising candidate for the treatment of AD.

8.
ACS Chem Neurosci ; 13(8): 1342-1354, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35385256

RESUMEN

Epilepsy is a relatively complicated neurological disorder that results in seizures. The use of resveratrol in treating seizures has been reported in recent studies. However, the low bioavailability of resveratrol and the difficulty of reaching the targeted location in the brain reduce its efficacy considerably. The side effects due to the higher concentration of drugs are another matter of concern. The purpose of the present study is to enhance the antiepileptic potential of resveratrol by delivering it to the brain's targeted location by encapsulating it in glutathione-coated collagen nanoparticles. The collagen nanoparticles increase the bioavailability of resveratrol, while the transport of resveratrol to its target location in the brain is facilitated by glutathione. By encapsulating resveratrol in glutathione-coated collagen nanoparticles, the concentration also substantially decreases. Resveratrol encapsulated in synthesized nanoparticles is referred to as nanoresveratrol. In the present study, nanoresveratrol effectiveness was studied through PTZ-induced seizures (PTZ-IS) and the increasing current electroshock (ICES) test. The efficacy of nanoresveratrol was further established using biochemical analysis, histopathological examinations, ELISA and real-time-PCR tests, and immunohistochemistry examination of the hippocampus of mice. Hence, this study is unique in the sense that it synthesized nanoresveratrol by using glutathione-coated collagen nanoparticles, followed by its application to treating seizures. On the basis of the study results, nanoresveratrol was found to be effective in preventing cognitive impairment in the mice and controlling epilepsy seizures to a greater extent than resveratrol. The proposed nanoformulation also reduces the concentration of resveratrol considerably. The present study results show that even 0.4 mg/kg of nanoresveratrol outperforms 40 mg/kg of resveratrol.


Asunto(s)
Epilepsia , Proteína HMGB1 , Nanopartículas , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Colágeno/efectos adversos , Epilepsia/tratamiento farmacológico , Glutatión , Hipocampo , Ratones , Pentilenotetrazol/farmacología , Resveratrol/farmacología , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Receptor Toll-Like 4
9.
ACS Omega ; 7(8): 6472-6480, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35252643

RESUMEN

Neurodegeneration is one of the most common diseases in the aged population, characterized by the loss in the function of neuronal cells and their ultimate death. One of the common features in the progression of this type of diseases is the oxidative stress. Drugs which are currently being used have been found to show lateral side effects, which is partly due to their inefficiency to cross blood-brain barrier. Nanoencapsulation of bioactive compounds is a profound approach in this direction and has become a method of choice nowadays. This study involved the evaluation of the anti-oxidative properties of magnoflorine (MF), which is an aporphine quaternary alkaloid, and synthesis of MF-loaded chitosan-collagen nanocapsules (MF-CCNc) for its better efficacy as a potent anti-oxidant. Physiochemical characterization of the synthesized nanocapsules was done by using dynamic light scattering and transmission electron microscopy. It revealed that the synthesized nanocapsules are of small size range, as small as 12 ± 2 nm, and are more or less of spherical shape. Sustained release was shown by MF in the in vitro drug release studies. Both MF and MF-CCNc were found to have good anti-oxidant potential with IC50 < 25 µg/mL. No major cytotoxicity was shown by the synthesized nanocapsules on SH-SY5Y cells. In silico anti-acetylcholinesterase (AChE) studies were also done, and they revealed that MF can be a potent inhibitor of AChE.

10.
Int Immunopharmacol ; 101(Pt A): 108287, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34731689

RESUMEN

Resveratrol has been found to exert protective effects in neurological disorders, including epilepsy. However, its poor bioavailability and difficulty in reaching the brain's targeted location reduce resveratrol's efficacy substantially. The side effects due to the higher concentration of drugs are another matter of concern. The objective of the present study is to propose solutions to these issues by encapsulating resveratrol in glutathione-coated collagen nanoparticles' core. The collagen nanoparticles increase the resveratrol's bioavailability, and glutathione helps in the passage of the encapsulated resveratrol to the target location in the brain. The concentration also substantially reduces due to resveratrol's encapsulation in glutathione-coated collagen nanoparticles. The encapsulated resveratrol is termed nanoresveratrol. The effectiveness of nanoresveratrol on epilepsy seizures was evaluated through histopathological examinations, ELISA tests, and qRT-PCR tests on the hippocampus of the kindled mice. The novelty of the present study thus lies in (i) the synthesis of nanoresveratrol using glutathione-coated collagen nanoparticles and (ii) the application of synthesized nanoresveratrol in the treatment of epilepsy. The study's outcome shows that nanoresveratrol has a favorable impact in reducing cognitive impairment in kindled mice, and it is more effective in controlling epilepsy seizures than resveratrol. The p-values of all the nanoresveratrol-given groups of mice (compared with the diseased group) were substantially smaller (∼10-4 to 10-2) than the significance level (0.05), indicating that the nanoresveratrol-given groups are significantly different from the diseased group, i.e., the nanoresveratrol has a significant effect on the mice. The concentration of resveratrol also decreases substantially in the proposed nanoformulation. It was observed that even 0.4 mg/kg of nanoformulation of resveratrol is performing better than 40 mg/kg of resveratrol.


Asunto(s)
Antioxidantes/administración & dosificación , Disfunción Cognitiva/tratamiento farmacológico , Epilepsia/tratamiento farmacológico , Sistema de Administración de Fármacos con Nanopartículas/química , Resveratrol/administración & dosificación , Animales , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Colágeno/química , Modelos Animales de Enfermedad , Epilepsia/inducido químicamente , Epilepsia/complicaciones , Epilepsia/patología , Glutatión/química , Hipocampo/efectos de los fármacos , Hipocampo/patología , Humanos , Masculino , Ratones , Estrés Oxidativo/efectos de los fármacos , Pentilenotetrazol/administración & dosificación , Pentilenotetrazol/toxicidad
11.
Front Neurol ; 12: 689069, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34354662

RESUMEN

Epilepsy is a complex neurological disorder, characterized by frequent electrical activity in brain regions. Inflammation and apoptosis cascade activation are serious neurological sequelae during seizures. Fisetin (3, 3',4',7-tetrahydroxyflavone), a flavonoid molecule, is considered for its effective anti-inflammatory and anti-apoptotic properties. This study investigated the neuroprotective effect of fisetin on experimental epilepsy. For acute studies, increasing current electroshock (ICES) and pentylenetetrazole (PTZ)-induced seizure tests were performed to evaluate the antiseizure activity of fisetin. For the chronic study, the kindling model was established by the administration of PTZ in subconvulsive dose (25 mg/kg, i.p.). Mice were treated with fisetin (5, 10, and 20 mg/kg, p.o.) to study its probable antiseizure mechanism. The kindled mice were evaluated for seizure scores. Their hippocampus and cortex were assessed for neuronal damage, inflammation, and apoptosis. Histological alterations were observed in the hippocampus of the experimental mice. Levels of high mobility group box 1 (HMGB1), Toll-like receptor-4 (TLR-4), interleukin-1 receptor 1 (IL-1R1), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were assessed in the hippocampus and cortex by ELISA. The immunoreactivity and mRNA expressions of nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2), cytochrome C, and caspase-3 were quantified by immunohistochemical analysis and real-time PCR. Phosphorylation ELISA was performed to evaluate AkT/mTOR (mammalian target of rapamycin) activation in the hippocampus and cortex of the kindled mice. The results showed that fisetin administration increased the seizure threshold current (STC) in the ICES test. In PTZ-induced seizures, fisetin administration increased the latency for myoclonic jerks (MJs) and generalized seizures (GSs). In the PTZ-induced kindling model, fisetin administration dose-dependently suppressed the development of kindling and the associated neuronal damage in the experimental mice. Further, fisetin administration ameliorated kindling-induced neuroinflammation as evident from decreased levels of HMGB1, TLR-4, IL-1R1, IL-1ß, IL-6, and TNF-α in the hippocampus and cortex of the kindled mice. Also, the immunoreactivity and mRNA expressions of inflammatory molecules, NF-κB, and COX-2 were decreased with fisetin administration in the kindled animals. Decreased phosphorylation of the AkT/mTOR pathway was reported with fisetin administration in the hippocampus and cortex of the kindled mice. The immunoreactivity and mRNA expressions of apoptotic molecules, cytochrome C, and caspase-3 were attenuated upon fisetin administration. The findings suggest that fisetin shows a neuroprotective effect by suppressing the release of inflammatory and apoptosis molecules and attenuating histological alterations during experimental epilepsy.

12.
Epilepsy Behav ; 116: 107788, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33581600

RESUMEN

OBJECTIVE: This study was conducted to evaluate the effect of embelin (EMB) on various epileptic models and related brain inflammation. METHODS: Male Swiss albino mice were administered EMB (5, 10, and 20 mg/kg/p.o.) in acute and chronic study for 7 days and 35 days, respectively. Acute study included increasing current electroshock (ICES) and pentylenetetrazol (PTZ)-induced seizure test. Step-down latency (SDL) and forced swim test (FST) were performed to evaluate cognitive functions and depression-like behavior, respectively. Chronic study included PTZ-induced kindling. Levels of inflammatory biomarkers, namely interleukin-1 beta (IL-1ß), interleukin-1 receptor antagonist (IL-1Ra), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), were estimated in the hippocampus and cortex of the kindled brains by ELISA technique. Further, neurotransmitters (NTs), namely gamma aminobutyric acid (GABA), glutamate, and dopamine, were estimated by using validated liquid chromatography-mass spectrometry (LC-MS) method followed by ultra-high-performance liquid chromatography (UHPLC). RESULTS: Embelin (EMB) treatment increased the seizure threshold to hind limb extension (HLE) in the ICES test and decreased the seizure scores in the kindling experiment. Significantly low levels of IL-1ß, IL-1Ra, IL-6, and TNF-α were observed in the hippocampus of PTZ + EMB (10 and 20 mg/kg)-treated groups compared with PTZ+ vehicle-treated group. Significantly lower levels of IL-1Ra, IL-6, and TNF-α compared with PTZ+ vehicle-treated group were observed in the cortex of PTZ + EMB (10 and 20 mg/kg)-treated groups, while IL-1ß levels were found to be significantly lower only in the cortex of PTZ + EMB (20 mg/kg)-treated group. Increased levels of dopamine and GABA and decreased levels of glutamate in both hippocampus and cortex were observed in EMB + PTZ-treated groups compared with vehicle + PTZ-treated group. Latency of step down was found to be increased and immobility time in FST was decreased in EMB + PTZ groups compared with vehicle + PTZ group. CONCLUSION: Embelin suppressed epileptogenesis in the kindled mice via neurochemical modulation of neurotransmitters and inhibiting the inflammatory pathway. Further, EMB was also observed to be protecting the kindled animals from cognition and depression-like behavior.


Asunto(s)
Disfunción Cognitiva , Encefalitis , Excitación Neurológica , Animales , Benzoquinonas , Masculino , Ratones , Pentilenotetrazol/toxicidad
13.
Ann Acad Med Singap ; 50(1): 52-60, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33623958

RESUMEN

INTRODUCTION: Coronavirus disease 2019 (COVID-19) cases are increasing rapidly worldwide. Similar to Middle East respiratory syndrome where cardiovascular diseases were present in nearly 30% of cases, the increased presence of cardiovascular comorbidities remains true for COVID-19 as well. The mechanism of this association remains unclear at this time. Therefore, we reviewed the available literature and tried to find the probable association between cardiovascular disease with disease severity and mortality in COVID-19 patients. METHODS: We searched Medline (via PubMed) and Cochrane Central Register of Controlled Trials for articles published until Sept 5, 2020. Nineteen articles were included involving 6,872 COVID-19 patients. RESULTS: The random-effect meta-analysis showed that cardiovascular disease was significantly associated with severity and mortality for COVID-19: odds ratio (OR) 2.89, 95% confidence interval (CI) 1.98-4.21 for severity and OR 3.00, 95% CI 1.67-5.39 for mortality, respectively. Risk of COVID-19 severity was higher in patients having diabetes, hypertension, chronic obstructive pulmonary disease, malignancy, cerebrovascular disease and chronic kidney disease. Similarly, patients with diabetes, hypertension, chronic liver disease, cerebrovascular disease and chronic kidney disease were at higher risk of mortality. CONCLUSION: Our findings showed that cardiovascular disease has a negative effect on health status of COVID-19 patients. However, large prevalence studies demonstrating the consequences of comorbid cardiovascular disease are urgently needed to understand the extent of these concerning comorbidities.


Asunto(s)
COVID-19/complicaciones , Enfermedades Cardiovasculares/complicaciones , COVID-19/diagnóstico , COVID-19/mortalidad , Enfermedades Cardiovasculares/mortalidad , Enfermedades Cardiovasculares/virología , Humanos
14.
RSC Adv ; 11(40): 24900-24916, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35481013

RESUMEN

Use of plant extracts for the synthesis of various metal nanoparticles has gained much importance recently because it is a simple, less hazardous, conservative and cost-effective method. In this research work, platinum nanoparticles were synthesized by treating platinum ions with the leaf extract of Psidium guajava and their structural properties were studied using various characterization techniques. The formation of platinum nanoparticles was confirmed by the disappearance of the absorbance peak at 261 nm in UV-visible spectra. The results of gas chromatography-mass spectrometry (GC-MS) and Fourier transform infrared spectroscopy (FT-IR) analysis showed functional moieties responsible for bio-reduction of metal ions and stabilization of platinum nanoparticles. The use of dynamic light scattering (DLS) imaging techniques confirmed the formation of stable monodispersed platinum nanoparticles showing a zeta potential of -23.4 mV. The morphological examination using high resolution transmission electron microscopy (HR-TEM) and Scanning electron microscopy (SEM) confirmed the formation of spherical platinum nanoparticles with an average diameter of 113.2 nm. X-ray powder diffraction (XRD) techniques showed the crystalline nature of biosynthesized platinum nanoparticles with a face-centered cubic structure. The results of energy-dispersive X-ray spectroscopy (EDAX) showed 100% platinum content by weight confirming the purity of the sample. The cytotoxic effect of biosynthesized platinum nanoparticles assessed in a breast cancer (MCF-7) cell-line by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, revealed an IC50 of 167.2 µg ml-1. The results of a wound healing assay showed that treatment with platinum nanoparticles induced an anti-migratory effect on MCF-7 cells. In the cell cycle phase distribution, treatment with platinum nanoparticles inhibited cell proliferation as determined by flow cytometry with PI staining. Significant cell cycle arrest was detected at the G0/G1 phase with a notable decrease in the distribution of cells in the S and G2/M phases. The anti-bacterial activity of bio-synthesized platinum nanoparticles was evaluated against four pathogenic bacteria i.e. B. cereus (Gram positive), P. aeruginosa (Gram negative), K. pneumonia (Gram negative) and E. coli (Gram negative). The biosynthesized platinum nanoparticles were found to show dose-dependent inhibition against pathogenic bacteria with a significant effect on Gram-negative bacteria compared to Gram-positive bacteria. This synergistic blend of green and simplistic synthesis coupled with anti-proliferative and anti-bacterial properties makes these biogenic nanoparticles suitable in nanomedicine.

15.
Front Neurosci ; 14: 538404, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192240

RESUMEN

Silymarin is a bioactive constituent isolated from milk thistle (Silybum marinum). Since its discovery, silymarin has been considered a gold standard drug in treating ailments related to the liver, resulting from alcohol consumption and viral hepatitis. This hepatoprotective nature of silymarin arises out of antioxidative and tissue-regenerating properties of silymarin. However, several recent studies have established the neuroprotective link of silymarin, too. Thus, the current investigation was aimed at exploring the neuroprotective effect of nanosilymarin (silymarin encapsulated inside collagen-based polymeric nanoparticulate drug delivery system). The study aimed at bringing out the role of nanoparticles in enhancing the therapeutic effect of silymarin against neuronal injury, originating out of oxidative-stress-related brain damages in focal cerebral ischemia. Collagen-based micellar nanoparticles were prepared and stabilized using 3-ethyl carbodiimide-hydrochloride (EDC-Hcl) and malondialdehyde (MDA) as crosslinkers. Nanoparticles were characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), and Fourier transform infrared (FT-IR) spectroscopy techniques, and the size of nanoparticles was found to be around 48 nm. Male albino Wistar rats were pretreated with three different doses of nanosilymarin of 10, 100, and 1,000 µg/kg b.wt and a dose of free silymarin of 100 mg/kg b.wt intraperitoneally (i.p.) for 7 days. Focal cerebral ischemia was induced using the middle cerebral artery occlusion (MCAO) model on the eighth day for 1 h followed by 24 h reperfusion. The animals were then evaluated for neurobehavioral, infarct analysis, biochemical, histopathological, and immunohistochemical studies. All the above parameters showed remarkable improvement in nanosilymarin-treated groups in comparison to the silymarin-treated group. Nanoparticle encapsulation of drug enhanced neuroprotection by increasing drug bioavailability and targeting. Thus, the present study concluded with satisfactory results, showing the critical role played by nanoparticles in improving the neuroprotection at very low drug doses.

16.
J Biomol Struct Dyn ; 38(12): 3610-3620, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31496427

RESUMEN

Glutathione (GU), an endogenous antioxidant tripeptide, is frequently transferred in the human brain through N-methyl-d-aspartate receptor (NMDAR), profusely expressed at the blood-brain barrier (BBB) junction. GU, also modifies the characteristics of tight junction proteins (occludin and claudin) at the site of BBB by depolarizing the enzyme, protein tyrosine phosphatase that manifests its usefulness for passive delivery of nanocarriers to the brain. GU, thus, represents itself as an ideal ligand for the surface decoration of nanocarriers to successfully administer them across the brain via receptor-mediated drug delivery pathway. Hence, we have employed here, in-silico approaches to identify the potential GU-like molecules, as appropriate ligand(s) for surface engineering of nanoconstruct with the purpose of attaining targeted drug delivery to the brain. Structure-based virtual screening methods was used to filter PubChem database for the identification of bioactive compounds with >95% structure similarity with GU. We have further screened the compounds against NMDAR using molecular docking approach. Top hits were selected based on their high binding affinities and selectivity towards NMDAR, and their binding pattern was analysed in detail. Finally, all atom molecular dynamics simulation for 100 ns was carried out on free NMDAR and in-presence of the selected GU-like compound, gamma-l-glutamyl-l-cysteine to evaluate complex stability and structural dynamics. In conclusion, gamma-l-glutamyl-l-cysteine may act as potential binding partner of NMDAR which can further be evaluated in drug delivery system to brain across the BBB.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Cisteína , Preparaciones Farmacéuticas , Encéfalo , Sistemas de Liberación de Medicamentos , Glutatión , Humanos , Simulación del Acoplamiento Molecular
17.
RSC Adv ; 10(4): 2241-2253, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35494586

RESUMEN

The effectiveness of curcumin in treating cerebral ischemia has been reported in recent studies. However, its mode of action is still not defined. The objective of the present study is to formulate collagen-curcumin nanocomposites which will work effectively against cerebral ischemia/reperfusion injury. Ischemic injury is followed by inflammatory damage and oxidative stress, which together contribute a lot in the pathogenesis of cerebral ischemia and may be considered a good target for treatment. The present study focused on examining the effectiveness of collagen-curcumin nanocomposites stabilized by increasing the degree of crosslinking in reducing oxidative stress associated with brain injury resulting from cerebral ischemia. The collagen nanoparticles were prepared by conjugating collagen on the surface of Tween©80 micelles, and further stabilizing them using crosslinkers. The effectiveness of the prepared nanocomposite was validated by performing infarct analysis followed by biochemical, behavioral, histopathological and immunohistochemical studies. The outcomes of this study are promising for the use of collagen-curcumin nanocomposites in showing neuroprotective potential in treating ischemic injury.

18.
ACS Omega ; 4(20): 18502-18509, 2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31737808

RESUMEN

Of late, novel magnetic nanomaterials have drawn worldwide attention because of the uniqueness in their properties and uses. In our studies, we have prepared nearly monodisperse zero-valent iron nanoparticles (nZVIs) of diameter of less than 60 nm in aqueous medium by a reductive precipitation process and pectin as stabilizing agent. The characterization of these nanoparticles was done by dynamic light scattering and transmission electron microscopy (TEM) techniques. The TEM images confirmed that the average size of the nZVIs was about 25 nm. The resultant nZVIs were then employed to degrade DDT (dichlorodiphenyltrichloroethane) in spiked soil, and their toxicity toward Collembola (Folsomia candida) and Ostracods (Heterocypris incongruens) was measured. The fabricated nZVIs degraded DDT in soil quite effectively. Further, the effects of nZVIs on Collembola and Ostracods were found to be negative. This was due to the oxidation of nZVIs and creation of anoxic conditions thereupon, and the generation of excess Fe(II) in soil. In addition, the negative effects of DDT on ostracod development and Collembola reproduction were found to be quite weak.

19.
J Sep Sci ; 42(21): 3293-3301, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31465611

RESUMEN

A systematic Quality by Design approach was employed for developing an isocratic reversed-phase liquid chromatographic technique for the estimation of ropinirole hydrochloride in bulk drug and pharmaceutical formulations. LiChrospher RP 18-5 Endcapped column (25 cm × 4.6 mm id) at ambient temperature (25 ± 2°C) was used for the chromatographic separation of the drug. The screening of factors influencing chromatographic separation of the active pharmaceutical ingredient was performed employing fractional factorial design to identify the influential factors. Optimization of the selected factors was carried out using central composite design for selecting the optimum chomatographic conditions. The mobile phase employed was constituted of Solvent A/Solvent B (65:35 v/v) (Solvent A [methanol/0.05 M ammonium acetate buffer, pH 7, 80:20 v/v] and Solvent B [high performance liquid chromatography grade water]) and used at 0.6 mL/min flow rate, while UV detection was performed at 250 nm. Linearity was achieved in the drug concentration range 5-100 µg/mL (R2  = 0.9998) with limits of detection and quantification of 1.02 and 3.09 µg/mL, respectively. Method validation was performed as per ICH guidelines followed by forced degradation studies, which indicated good specificity of the developed method for detecting ropinirole hydrochloride and its possible degradation products in the bulk drug and pharmaceutical formulations.


Asunto(s)
Indoles/análisis , Cromatografía Líquida de Alta Presión , Composición de Medicamentos , Indoles/metabolismo
20.
ACS Omega ; 3(7): 7846-7855, 2018 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31458927

RESUMEN

Polymers and transition-metal oxides have gained great interest as a photocatalyst in environmental remediation. They could be modified with each other in order to improve their activity. Here, a sunlight-responsive hierarchically structured ternary composite of nickel oxide, polyaniline, and reduced graphene oxide (NiO@PANI/RGO) has been synthesized and employed as a catalyst for dye [methylene blue (MB)] degradation. PANI/GO synthesized by interfacial polymerization acts as a matrix for the growth of NiO using a microemulsion solvothermal method, ensuing an in situ reduction of graphene oxide during the formation of a hierarchical NiO@PANI/RGO composite. Morphological studies of the as-synthesized NiO@PANI/RGO composite reveal fine NiO (10 nm) nanoparticles intercalated between the uniformly grown PANI spines (50-60 nm) over the RGO surface. The optical band gap of ∼1.9 eV calculated from the UV-vis spectrum illustrates the extended light absorption range for the NiO@PANI/RGO photocatalyst. The efficiency of 98% MB degradation within 11 min with the degradation rate constant 0.086 min-1 for NiO@PANI/RGO has surpassed any other report on metal oxide/graphene-based ternary composites. Overall, this work could pave the way for the fabrication of futuristic hierarchical structured ternary nanocomposites as an efficient photocatalyst and facilitate their application in the environmental protection issues.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...