Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem ; 14(20): 7023-33, 2006 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-16806948

RESUMEN

Beta-lactams with 6alpha (penicillins) or 7alpha (cephalosporins) substituents are often beta-lactamase inhibitors. This paper assesses the effect of such substituents on acyclic beta-lactamase substrates. Thus, a series of m-carboxyphenyl phenaceturates, substituted at the glycyl alpha-carbon by -OMe, -CH(2)OH, -CO(2)(-), and -CH(2)NH(3)(+), have been prepared, and tested for their reactivity against serine beta-lactamases. The latter two are novel substituents in beta-lactamase substrates. The methoxy and hydroxymethyl compounds were found to be poor to moderately good substrates, depending on the enzyme. The aminomethyl compound gave rise to a transiently stable (t(1/2)=4.6s) complex on its reaction with a class C beta-lactamase. The reactivity of the compounds against three low molecular weight DD-peptidases was also tested. Again, the methoxy and hydroxymethyl compounds proved to be quite good substrates with no sign of inhibitory complexes. The DD-peptidases reacted with one enantiomer (the compounds were prepared as racemates), presumably the D compound. The class C beta-lactamase reacted with both D and L enantiomers although it preferred the latter. The structural bases of these stereo-preferences were explored by reference to the crystal structure of the enzyme by molecular modeling studies. The aminomethyl compound was unreactive with the DD-peptidases, whereas the carboxy compound did not react with any of the above-mentioned enzymes. The inhibitory effects of the -OMe and -CH(2)OH substituents in beta-lactams apparently require a combination of the substituent and the pendant leaving group of the beta-lactam at the acyl-enzyme stage.


Asunto(s)
Glicina/análogos & derivados , beta-Lactamasas/química , Sitios de Unión , Activación Enzimática , Glicina/síntesis química , Glicina/química , Hidrólisis , Modelos Moleculares , Estructura Molecular , Estereoisomerismo , Relación Estructura-Actividad , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...