Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 13(12)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207464

RESUMEN

Targeting multiple cellular populations is of high therapeutic relevance for the tackling of solid tumors heterogeneity. Herein, the ability of pegylated and pH-sensitive liposomes, functionalized with the nucleolin-binding F3 peptide and containing doxorubicin (DXR)/C6-ceramide synergistic combination, to target, in vitro, ovarian cancer, including ovarian cancer stem cells (CSC), was assessed. The underlying molecular mechanism of action of the nucleolin-mediated intracellular delivery of C6-ceramide to cancer cells was also explored. The assessment of overexpression of surface nucleolin expression by flow cytometry was critical to dissipate differences identified by Western blot in membrane/cytoplasm of SKOV-3, OVCAR-3 and TOV-112D ovarian cancer cell lines. The former was in line with the significant extent of uptake into (bulk) ovarian cancer cells, relative to non-targeted and non-specific counterparts. This pattern of uptake was recapitulated with putative CSC-enriched ovarian SKOV-3 and OVCAR-3 sub-population (EpCAMhigh/CD44high). Co-encapsulation of DXR:C6-ceramide into F3 peptide-targeted liposomes improved cytotoxic activity relative to liposomes containing DXR alone, in an extent that depended on the intrinsic resistance to DXR and on the incubation time. The enhanced cytotoxicity of the targeted combination was mechanistically supported by the downregulation of PI3K/Akt pathway by C6-ceramide, only among the nucleolin-overexpressing cancer cells presenting a basal p-Akt/total Akt ratio lower than 1.

2.
Arch Toxicol ; 90(7): 1669-84, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26318906

RESUMEN

The adaptor protein p66Shc modulates cellular redox status integrating oxidative stress with mitochondrial stress responses. Upon oxidative stress, p66Shc is translocated to mitochondria or mitochondria-associated membranes in a multi-step process, resulting in locally increased reactive oxygen species production. This signaling pathway is believed to be important in the context of drug-induced organ toxicity. The use of anthracyclines as anticancer agents is limited due to a dose-dependent and cumulative toxicity resulting in cardiomyopathy. Treatment with the anthracycline doxorubicin (DOX) results in a dose-dependent and cumulative cardiotoxicity which is mediated, at least in part, by increased oxidative stress. In the present study, we investigated for the first time whether p66Shc signaling is activated during DOX treatment of the rat cardiomyoblast H9c2 cell line. We further tested whether the transcriptional factor FoxO3a, which activates target genes responsible for apoptosis and cell cycle arrest, is also involved in p66Shc-dependent redox signaling pathway. Our results suggest that DOX treatment induces p66Shc protein up-regulation specifically in nuclear fractions. Increased nuclear expression of FoxO3a was also detected in H9c2 cells after DOX treatment. Treatment with the antioxidant and protein kinase C (PKC-ß) inhibitor hispidin decreased DOX-induced activation of caspase 9 and p66Shc alterations. Taking together, we hypothesize that p66Shc signaling is involved in the activation of stress/toxicity responses elicited by the treatment of H9c2 cells with DOX. Hence, the selective inhibition of this redox pathway may be a promising therapeutic approach to circumvent DOX cardiotoxicity.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Doxorrubicina/toxicidad , Mioblastos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Animales , Cardiotoxicidad , Técnicas de Cultivo de Célula , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Proteína Forkhead Box O3/metabolismo , Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Mioblastos Cardíacos/metabolismo , Transporte de Proteínas , Ratas , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética
3.
Biochim Biophys Acta ; 1842(12 Pt A): 2468-78, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25283819

RESUMEN

The cardiotoxicity induced by the anti-cancer doxorubicin involves increased oxidative stress, disruption of calcium homeostasis and activation of cardiomyocyte death. Nevertheless, antioxidants and caspase inhibitors often show little efficacy in preventing cell death. We hypothesize that a caspase-independent cell death mechanism with the release of the apoptosis-inducing factor from mitochondria is involved in doxorubicin toxicity. To test the hypothesis, H9c2 cardiomyoblasts were used as model for cardiac cells. Our results demonstrate that z-VAD-fmk, a pan-caspase inhibitor, does not prevent doxorubicin toxicity in this cell line. Doxorubicin treatment results in AIF translocation to the nuclei, as confirmed by Western Blotting of cell fractions and confocal microscopy. Also, doxorubicin treatment of H9c2 cardiomyoblasts resulted in the appearance of 50kbp DNA fragments, a hallmark of apoptosis-inducing factor nuclear effects. Apoptosis-inducing factor knockdown using a small-interfering RNA approach in H9c2 cells resulted in a reduction of doxorubicin toxicity, including decreased p53 activation and poly-ADP-ribose-polymerase cleavage. Among the proteases that could be responsible for apoptosis-inducing factor cleavage, doxorubicin decreased calpain activity but increased cathepsin B activation, with inhibition of the latter partly decreasing doxorubicin toxicity. Altogether, the results support that apoptosis-inducing factor release is involved in doxorubicin-induced H9c2 cell death, which explains the limited ability of caspase inhibitors to prevent toxicity.


Asunto(s)
Factor Inductor de la Apoptosis/metabolismo , Apoptosis/efectos de los fármacos , Doxorrubicina/farmacología , Miocitos Cardíacos/efectos de los fármacos , Transporte Activo de Núcleo Celular/efectos de los fármacos , Clorometilcetonas de Aminoácidos/farmacología , Animales , Antibióticos Antineoplásicos/farmacología , Apoptosis/genética , Factor Inductor de la Apoptosis/genética , Western Blotting , Inhibidores de Caspasas/farmacología , Caspasas/metabolismo , Línea Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Fragmentación del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Microscopía Confocal , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Biológicos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Interferencia de ARN , Ratas , Factores de Tiempo
4.
Int J Biochem Cell Biol ; 45(11): 2379-91, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23958426

RESUMEN

ß-Adrenergic receptor stimulation plays an important role in cardiomyocyte stress responses, which may result in apoptosis and cardiovascular degeneration. We previously demonstrated that toxicity of the ß-adrenergic agonist isoproterenol on H9c2 cardiomyoblasts depends on the stage of cell differentiation. We now investigate ß-adrenergic receptor downstream signaling pathways and stress responses that explain the impact of muscle cell differentiation on hyper-ß-adrenergic stimulation-induced cytotoxicity. When incubated with isoproterenol, differentiated H9c2 muscle cells have increased cytosolic calcium, cyclic-adenosine monophosphate content and oxidative stress, as well as mitochondrial depolarization, increased superoxide anion, loss of subunits from the mitochondrial respiratory chain, decreased Bcl-xL content, increased p53 and phosphorylated-p66Shc as well as activated caspase-3. Undifferentiated H9c2 cells incubated with isoproterenol showed increased Bcl-xL protein and increased superoxide dismutase 2 which may act as protective mechanisms. We conclude that the differentiation of H9c2 is associated with differential regulation of stress responses, which impact the toxicity of several agents, namely those acting through ß-adrenergic receptors and resulting in mitochondrial disruption in differentiated cells only.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Isoproterenol/toxicidad , Mitocondrias/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Estrés Fisiológico/efectos de los fármacos , Animales , Antioxidantes/farmacología , Calcio/metabolismo , Caspasa 3/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , AMP Cíclico/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Modelos Biológicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/enzimología , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Superóxidos/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
5.
Cardiovasc Toxicol ; 12(4): 326-40, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22744233

RESUMEN

A characteristic component of the anti-neoplastic doxorubicin (DOX)-induced cardiac toxicity is the delayed and persistent toxicity, with cancer childhood survivors developing cardiac failure later in life. The mechanisms behind this persistent toxicity are unknown, although one of the consequences of early childhood treatment with DOX is a specific removal of cardiac progenitor cells. DOX treatment may be more toxic to undifferentiated muscle cells, contributing to impaired cardiac development and toxicity persistence. H9c2 myoblasts, a rat embryonic cell line, which has the ability to differentiate into a skeletal or cardiac muscle phenotype, can be instrumental in understanding DOX cytotoxicity in different differentiation stages. H9c2 cell differentiation results in decreased cell proliferation and increased expression of a differentiated muscle marker. Differentiated H9c2 cells accumulated more DOX and were more susceptible to DOX-induced cytotoxicity. Differentiated cells had increased levels of mitochondrial superoxide dismutase and Bcl-xL, an anti-apoptotic protein. Of critical importance for the mechanisms of DOX toxicity, p53 appeared to be equally activated regardless of the differentiation state. We suggest that although more differentiated H9c2 muscle cells appear to have more basal mechanisms that would predict higher protection, DOX toxicity is higher in the differentiated population. The results are instrumental in the understanding of stress responses of this specific cell line in different differentiation stages to the cardiotoxicity caused by anthracyclines.


Asunto(s)
Cardiotoxinas/toxicidad , Diferenciación Celular/efectos de los fármacos , Doxorrubicina/toxicidad , Mioblastos Cardíacos/efectos de los fármacos , Animales , Diferenciación Celular/fisiología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Mioblastos Cardíacos/fisiología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...