Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomol NMR Assign ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38907837

RESUMEN

Signalosomes are high-order protein machineries involved in complex mechanisms controlling regulated immune defense and cell death execution. The immune response is initiated by the recognition of exogeneous or endogenous signals, triggering the signalosome assembly process. The final step of signalosome fate often involves membrane-targeting and activation of pore-forming execution domains, leading to membrane disruption and ultimately cell death. Such cell death-inducing domains have been thoroughly characterized in plants, mammals and fungi, notably for the fungal cell death execution protein domain HeLo. However, little is known on the mechanisms of signalosome-based immune response in bacteria, and the conformation of cell death executors in bacterial signalosomes is still poorly characterized. We recently uncovered the existence of NLR signalosomes in various multicellular bacteria and used genome mining approaches to identify putative cell death executors in Streptomyces olivochromogenes. These proteins contain a C-terminal amyloid domain involved in signal transmission and a N-terminal domain, termed BELL for Bacteria analogous to fungal HeLL (HeLo-like), presumably responsible for membrane-targeting, pore-forming and cell death execution. In the present study, we report the high yield expression of S. olivochromogenes BELL2 and its characterization by solution NMR spectroscopy. BELL is folded in solution and we report backbone and sidechain assignments. We identified five α-helical secondary structure elements and a folded core much smaller than its fungal homolog HeLo. This study constitutes the first step toward the NMR investigation of the full-length protein assembly and its membrane targeting.

2.
Commun Biol ; 5(1): 1202, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36352173

RESUMEN

Structural investigations of amyloid fibrils often rely on heterologous bacterial overexpression of the protein of interest. Due to their inherent hydrophobicity and tendency to aggregate as inclusion bodies, many amyloid proteins are challenging to express in bacterial systems. Cell-free protein expression is a promising alternative to classical bacterial expression to produce hydrophobic proteins and introduce NMR-active isotopes that can improve and speed up the NMR analysis. Here we implement the cell-free synthesis of the functional amyloid prion HET-s(218-289). We present an interesting case where HET-s(218-289) directly assembles into infectious fibril in the cell-free expression mixture without the requirement of denaturation procedures and purification. By introducing tailored 13C and 15N isotopes or CF3 and 13CH2F labels at strategic amino-acid positions, we demonstrate that cell-free synthesized amyloid fibrils are readily amenable to high-resolution magic-angle spinning NMR at sub-milligram quantity.


Asunto(s)
Amiloide , Priones , Amiloide/química , Espectroscopía de Resonancia Magnética/métodos , Proteínas Amiloidogénicas , Imagen por Resonancia Magnética
3.
Methods Mol Biol ; 1635: 57-90, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28755364

RESUMEN

Small hydrophobic membrane proteins or proteins with hydrophobic domains are often difficult to produce in bacteria. The cell-free expression system was found to be a very good alternative for the expression of small hydrophobic subunits of the yeast ATP-synthase, such as subunits e, g, k, i, f and the membrane domain of subunit 4, proteins that are suspected to play a role in the stability of ATP-synthase dimers. All of these proteins could be produced in milligrams amounts using the cell-free "precipitate mode" and were successfully solubilized in the presence of lysolipid 1-myristoyl-2-hydroxy-sn-glycero-3-phospho-1'-rac-glycerol. Purified proteins were also found suitable for structural investigations. An example is given with the NMR backbone assignment of the isotopically labeled subunit g. Protocols are also described for raising specific polyclonal antibodies against overexpressed cell-free proteins.


Asunto(s)
ATPasas de Translocación de Protón Mitocondriales/metabolismo , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/enzimología , Sistema Libre de Células , Expresión Génica , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Resonancia Magnética , ATPasas de Translocación de Protón Mitocondriales/química , Dominios Proteicos , Multimerización de Proteína , Estabilidad Proteica , Subunidades de Proteína/química , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Bioorg Med Chem Lett ; 22(8): 2973-5, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22425567

RESUMEN

Atractyloside (ATR) was characterized in 1868 and until now structural studies on diterpenic moiety had been done through the characterization of ATR derivatives; while the glycosidic moiety seemed to be a ß-D-glucopyranose a recent crystal structure of the mitochondrial ATP/ADP carrier in complex with CATR showed an α-D-glucopyranose. We decided to re-examine the ATR and CATR structures by crystallographic study of ATR.


Asunto(s)
Atractilósido/análogos & derivados , Atractilósido/química , Modelos Moleculares , Cristalografía por Rayos X , Complejos Multiproteicos/química
5.
J Struct Biol ; 177(2): 490-7, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22119846

RESUMEN

The F(1)F(O)-ATP synthase is a rotary molecular nanomotor. F(1) is a chemical motor driven by ATP hydrolysis while F(O) is an electrical motor driven by the proton flow. The two stepping motors are mechanically coupled through a common rotary shaft. Up to now, the three available crystal structures of the F(1)c(10) sub-complex of the yeast F(1)F(O)-ATP synthase were isomorphous and then named yF(1)c(10)(I). In this crystal form, significant interactions of the c(10)-ring with the F(1)-head of neighboring molecules affected the overall conformation of the F(1)-c-ring complex. The symmetry axis of the F(1)-head and the inertia axis of the c-ring were tilted near the interface between the F(1)-central stalk and the c-ring rotor, resulting in an unbalanced machine. We have solved a new crystal form of the F(1)c(10) complex, named yF(1)c(10)(II), inhibited by adenylyl-imidodiphosphate (AMP-PNP) and dicyclohexylcarbodiimide (DCCD), at 6.5Å resolution in which the crystal packing has a weaker influence over the conformation of the F(1)-c-ring complex. yF(1)c(10)(II) provides a model of a more efficient generator. yF(1)c(10)(II) and bovine bF(1)c(8) structures share a common rotor architecture with the inertia center of the F(1)-stator close to the rotor axis.


Asunto(s)
ATPasas de Translocación de Protón/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Animales , Bovinos , Cristalografía por Rayos X , Modelos Moleculares , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología Estructural de Proteína , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...