Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 10(9)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37760164

RESUMEN

Photoacoustic (PA) imaging can be used to monitor high-intensity focused ultrasound (HIFU) therapies because ablation changes the optical absorption spectrum of the tissue, and this change can be detected with PA imaging. Multi-wavelength photoacoustic (MWPA) imaging makes this change easier to detect by repeating PA imaging at multiple optical wavelengths and sampling the optical absorption spectrum more thoroughly. Real-time pixel-wise classification in MWPA imaging can assist clinicians in monitoring HIFU lesion formation and will be a crucial milestone towards full HIFU therapy automation based on artificial intelligence. In this paper, we present a deep-learning-based approach to segment HIFU lesions in MWPA images. Ex vivo bovine tissue is ablated with HIFU and imaged via MWPA imaging. The acquired MWPA images are then used to train and test a convolutional neural network (CNN) for lesion segmentation. Traditional machine learning algorithms are also trained and tested to compare with the CNN, and the results show that the performance of the CNN significantly exceeds traditional machine learning algorithms. Feature selection is conducted to reduce the number of wavelengths to facilitate real-time implementation while retaining good segmentation performance. This study demonstrates the feasibility and high performance of the deep-learning-based lesion segmentation method in MWPA imaging to monitor HIFU lesion formation and the potential to implement this method in real time.

2.
Artículo en Inglés | MEDLINE | ID: mdl-35522635

RESUMEN

This article presents an imaging probe with a 256-element ultrawideband (UWB) 1-D capacitive micromachined ultrasonic transducer (CMUT) array designed for acoustic angiography (AA). This array was fabricated on a borosilicate glass wafer with a reduced bottom electrode and an additional central plate mass to achieve the broad bandwidth. A custom 256-channel handheld probe was designed and implemented with integrated low-noise amplifiers and supporting power circuitry. This probe was used to characterize the UWB CMUT, which has a functional 3-dB frequency band from 3.5 to 23.5 MHz. A mechanical index (MI) of 0.33 was achieved at 3.5 MHz at a depth of 11 mm. These promising measurements are then combined to demonstrate AA. The use of alternate amplitude modulation (aAM) combined with a frequency analysis of the measured transmit signal demonstrates the suitability of the UWB CMUT for AA. This is achieved by measuring only a low level of unwanted high-frequency harmonics in both the transmit signal and the reconstructed image in the areas other than the contrast bubbles.


Asunto(s)
Transductores , Ultrasonido , Angiografía , Diseño de Equipo , Ultrasonografía/métodos
3.
Artículo en Inglés | MEDLINE | ID: mdl-32759081

RESUMEN

This article presents a row-column (RC) capacitive micromachined ultrasonic transducer (CMUT) array fabricated using anodic bonding on a borosilicate glass substrate. This is shown to reduce the bottom electrode-to-substrate capacitive coupling. This subsequently improves the relative response of the elements when top or bottom electrodes are used as the "signal" (active) electrode. This results in a more uniform performance for the two cases. Measured capacitance and resonant frequency, pulse-echo signal amplitude, and frequency response are presented to support this. Biasing configurations with varying ac and dc arrangements are applied and subsequently explored. Setting the net dc bias voltage across an off element to zero is found to be most effective to minimize spurious transmission. To achieve this, a custom switching circuit was designed and implemented. This circuit was also used to obtain orthogonal B-mode cross-sectional images of a rotationally asymmetric target.

4.
Artículo en Inglés | MEDLINE | ID: mdl-30442605

RESUMEN

The integration of intravascular ultrasound (IVUS) and intravascular photoacoustic (IVPA) imaging produces an imaging modality with high sensitivity and specificity which is particularly needed in interventional cardiology. Conventional side-looking IVUS imaging with a single-element ultrasound (US) transducer lacks forward-viewing capability, which limits the application of this imaging mode in intravascular intervention guidance, Doppler-based flow measurement, and visualization of nearly, or totally blocked arteries. For both side-looking and forward-looking imaging, the necessity to mechanically scan the US transducer limits the imaging frame rate, and therefore, array-based solutions are desired. In this paper, we present a low-cost, compact, high-speed, and programmable imaging system based on a field-programmable gate array suitable for dual-mode forward-looking IVUS/IVPA imaging. The system has 16 US transmit and receive channels and functions in multiple modes including interleaved photoacoustic (PA) and US imaging, hardware-based high-frame-rate US imaging, software-driven US imaging, and velocity measurement. The system is implemented in the register-transfer level, and the central system controller is implemented as a finite-state machine. The system was tested with a capacitive micromachined ultrasonic transducer array. A 170-frames-per-second (FPS) US imaging frame rate is achieved in the hardware-based high-frame-rate US imaging mode while the interleaved PA and US imaging mode operates at a 60-FPS US and a laser-limited 20-FPS PA imaging frame rate. The performance of the system benefits from the flexibility and efficiency provided by the low-level implementation. The resulting system provides a convenient backend platform for research and clinical IVPA and IVUS imaging.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Técnicas Fotoacústicas/métodos , Ultrasonografía Intervencional/métodos , Algoritmos , Diseño de Equipo , Fantasmas de Imagen , Técnicas Fotoacústicas/instrumentación , Transductores , Ultrasonografía Intervencional/instrumentación
5.
Artículo en Inglés | MEDLINE | ID: mdl-30440288

RESUMEN

In this work, we present preliminary characterization results from a 32 x 32 row-column (RC) addressed 2D capacitive micromachined ultrasonic transducer (CMUT) array. The device was fabricated using anodic bonding on a borosilicate glass substrate, which eliminates the substrate - bottom electrode coupling previously observed in traditional CMUT RC arrays fabricated on silicon substrates. The characterization results were compared for the top and bottom electrodes and include impedance measurements, pulseecho impulse responses, and 2D scans of the pressure field using a calibrated hydrophone. The results showed that the array elements behave similarly when ground and hot electrodes were switched between the top and bottom electrodes for all of the measured parameters including device capacitance, center frequency, and pulse-echo response amplitude. The pressure scans verified the highly customizable nature of RC arrays by showing multiple active element configurations. A sample cross-sectional image of a metal target was also demonstrated.


Asunto(s)
Ultrasonido/instrumentación , Estudios Transversales , Capacidad Eléctrica , Impedancia Eléctrica , Electrodos , Diseño de Equipo , Transductores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA