Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
1.
PLoS Pathog ; 20(10): e1012558, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39361585

RESUMEN

An effective human immunodeficiency virus 1 (HIV-1) vaccine will most likely have to elicit broadly neutralizing antibodies (bNAbs) to overcome the sequence diversity of the envelope glycoprotein (Env). So far, stabilized versions of Env, such as SOSIP trimers, have been able to induce neutralizing antibody (NAb) responses, but those responses are mainly strain-specific. Here we attempted to broaden NAb responses by using a multivalent vaccine and applying a number of design improvements. First, we used highly stabilized SOSIP.v9 trimers. Second, we removed any holes in the glycan shields and optimized glycan occupancy to avoid strain-specific glycan hole responses. Third, we selected five sequences from the same clade (B), as we observed previously that combining Env trimers from clade A, B and C did not improve cross-reactive responses, as they might have been too diverse. Fourth, to improve antibody (Ab) responses, the Env trimers were displayed on two-component I53-50 nanoparticles (NPs). Fifth, to favor activation of cross-reactive B cells, the five Env trimers were co-displayed on mosaic NPs. Sixth, we immunized rabbits four times with long intervals between vaccinations. These efforts led to the induction of cross-reactive B cells and cross-reactive binding Ab responses, but we only sporadically detected cross-neutralizing responses. We conclude that stabilized HIV-1 Env trimers that are not modified specifically for priming naive B cells are unable to elicit strong bNAb responses, and infer that sequential immunization regimens, most likely starting with specific germline-targeting immunogens, will be necessary to overcome Env's defenses against the induction of NAbs. The antigens described here could be excellent boosting immunogens in a sequential immunization regimen, as responses to bNAb epitopes were induced.


Asunto(s)
Vacunas contra el SIDA , Anticuerpos Neutralizantes , Epítopos , Anticuerpos Anti-VIH , VIH-1 , Nanopartículas , Productos del Gen env del Virus de la Inmunodeficiencia Humana , VIH-1/inmunología , Anticuerpos Anti-VIH/inmunología , Animales , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Vacunas contra el SIDA/inmunología , Humanos , Epítopos/inmunología , Anticuerpos Neutralizantes/inmunología , Conejos , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , Anticuerpos ampliamente neutralizantes/inmunología , Formación de Anticuerpos/inmunología
2.
Cell Rep ; 43(9): 114708, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39243373

RESUMEN

Lassa fever continues to be a major public health burden in West Africa, yet effective therapies or vaccines are lacking. The isolation of protective neutralizing antibodies against the Lassa virus glycoprotein complex (GPC) justifies the development of vaccines that can elicit strong neutralizing antibody responses. However, Lassa vaccine candidates have generally been unsuccessful at doing so, and the associated antibody responses to these vaccines remain poorly characterized. Here, we establish an electron microscopy-based epitope mapping workflow that enables high-resolution structural characterization of polyclonal antibodies to the GPC. By applying this method to rabbits vaccinated with a recombinant GPC vaccine and a GPC-derived virus-like particle, we reveal determinants of neutralization that involve epitopes of the GPC-A competition cluster. Furthermore, by identifying undescribed immunogenic off-target epitopes, we expose the challenges that recombinant GPC vaccines face. By enabling detailed polyclonal antibody characterization, our work ushers in a next generation of more rational Lassa vaccine design.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Fiebre de Lassa , Virus Lassa , Virus Lassa/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Conejos , Anticuerpos Antivirales/inmunología , Fiebre de Lassa/inmunología , Fiebre de Lassa/prevención & control , Epítopos/inmunología , Vacunas Virales/inmunología , Humanos , Mapeo Epitopo , Formación de Anticuerpos/inmunología
3.
J Exp Med ; 221(10)2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39235529

RESUMEN

Stabilized trimers preserving the native-like HIV envelope structure may be key components of a preventive HIV vaccine regimen to induce broadly neutralizing antibodies (bnAbs). We evaluated trimeric BG505 SOSIP.664 gp140 formulated with a novel TLR7/8 signaling adjuvant, 3M-052-AF/Alum, for safety, adjuvant dose-finding, and immunogenicity in a first-in-healthy adult (n = 17), randomized, and placebo-controlled trial (HVTN 137A). The vaccine regimen appeared safe. Robust, trimer-specific antibody, and B cell and CD4+ T cell responses emerged after vaccination. Five vaccinees developed serum autologous tier 2 nAbs (ID50 titer, 1:28-1:8647) after two to three doses targeting C3/V5 and/or V1/V2/V3 Env regions by electron microscopy and mutated pseudovirus-based neutralization analyses. Trimer-specific, B cell-derived monoclonal antibody activities confirmed these results and showed weak heterologous neutralization in the strongest responder. Our findings demonstrate the clinical utility of the 3M-052-AF/Alum adjuvant and support further improvements of trimer-based Env immunogens to focus responses on multiple broad nAb epitopes.


Asunto(s)
Vacunas contra el SIDA , Adyuvantes Inmunológicos , Compuestos de Alumbre , Anticuerpos Neutralizantes , Productos del Gen env del Virus de la Inmunodeficiencia Humana , Humanos , Anticuerpos Neutralizantes/inmunología , Vacunas contra el SIDA/inmunología , Vacunas contra el SIDA/administración & dosificación , Compuestos de Alumbre/administración & dosificación , Adulto , Adyuvantes Inmunológicos/administración & dosificación , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Anticuerpos Anti-VIH/inmunología , Femenino , VIH-1/inmunología , Masculino , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , Linfocitos B/inmunología , Adyuvantes de Vacunas , Persona de Mediana Edad , Adulto Joven , Linfocitos T CD4-Positivos/inmunología
4.
J Virol ; : e0074424, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240111

RESUMEN

VRC01-class broadly neutralizing antibodies (bnAbs) have been isolated from people with HIV-1, but they have not yet been elicited by vaccination. They are extensively somatically mutated and sometimes accumulate CDRL1 deletions. Such indels may allow VRC01-class antibodies to accommodate the glycans expressed on a conserved N276 N-linked glycosylation site in loop D of the gp120 subunit. These glycans constitute a major obstacle in the development of VRC01-class antibodies, as unmutated antibody forms are unable to accommodate them. Although immunizations of knock-in mice expressing human VRC01-class B-cell receptors (BCRs) with specifically designed Env-derived immunogens lead to the accumulation of somatic mutations in VRC01-class BCRs, CDRL1 deletions are rarely observed, and the elicited antibodies display narrow neutralizing activities. The lack of broad neutralizing potential could be due to the absence of deletions, the lack of appropriate somatic mutations, or both. To address this point, we modified our previously determined prime-boost immunization with a germline-targeting immunogen nanoparticle (426c.Mod.Core), followed by a heterologous core nanoparticle (HxB2.WT.Core), by adding a final boost with a cocktail of various stabilized soluble Env trimers. We isolated VRC01-like antibodies with extensive somatic mutations and, in one case, a seven-amino acid CDRL1 deletion. We generated chimeric antibodies that combine the vaccine-elicited somatic mutations with CDRL1 deletions present in human mature VRC01 bnAbs. We observed that CDRL1 indels did not improve the neutralizing antibody activities. Our study indicates that CDRL1 length by itself is not sufficient for the broadly neutralizing phenotype of this class of antibodies. IMPORTANCE: HIV-1 broadly neutralizing antibodies will be a key component of an effective HIV-1 vaccine, as they prevent viral acquisition. Over the past decade, numerous broadly neutralizing antibodies (bnAbs) have been isolated from people with HIV. Despite an in-depth knowledge of their structures, epitopes, ontogenies, and, in a few rare cases, their maturation pathways during infection, bnAbs have, so far, not been elicited by vaccination. This necessitates the identification of key obstacles that prevent their elicitation by immunization and overcoming them. Here we examined whether CDRL1 shortening is a prerequisite for the broadly neutralizing potential of VRC01-class bnAbs, which bind within the CD4 receptor binding site of Env. Our findings indicate that CDRL1 shortening by itself is important but not sufficient for the acquisition of neutralization breadth, and suggest that particular combinations of amino acid mutations, not elicited so far by vaccination, are most likely required for the development of such a feature.

5.
bioRxiv ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39345501

RESUMEN

Various design platforms are available to stabilize soluble HIV-1 envelope (Env) trimers, which can be used as antigenic baits and vaccine antigens. However, stabilizing HIV-1 clade C trimers can be challenging. Here, we stabilized an HIV-1 clade C trimer based on an Env isolated from a pediatric elite-neutralizer (AIIMS_329) using multiple platforms, including SOSIP.v8.2, ferritin nanoparticles (NP) and an I53-50 two-component NP, followed by characterization of their biophysical, antigenic, and immunogenic properties. The stabilized 329 Envs showed binding affinity to trimer-specific HIV-1 broadly neutralizing antibodies (bnAbs), with negligible binding to non-neutralizing antibodies (non-nAbs). Negative-stain electron microscopy (nsEM) confirmed the native-like conformation of the Envs. Multimerization of 329 SOSIP.v8.2 on ferritin and two-component I53-50 NPs improved the overall affinity to HIV-1 bnAbs and immunogenicity in rabbits. These stabilized HIV-1 clade C 329 Envs demonstrate the potential to be used as antigenic baits and as components of multivalent vaccine candidates in future.

6.
Vaccines (Basel) ; 12(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39203954

RESUMEN

Gold nanoparticles (AuNPs) decorated with antigens have recently emerged as promising tools for vaccine development due to their innate ability to provide stability to antigens and modulate immune responses. In this study, we have engineered deactivated virus-like particles (VLPs) by precisely functionalizing gold cores with coronas comprising the full SARS-CoV-2 spike protein (S). Using BALB/c mice as a model, we investigated the immunogenicity of these S-AuNPs-VLPs. Our results demonstrate that S-AuNPs-VLPs consistently enhanced antigen-specific antibody responses compared to the S protein free in solution. This enhancement included higher binding antibody titers, higher neutralizing capacity of antibodies, and stronger T-cell responses. Compared to the mRNA COVID-19 vaccine, where the S protein is synthesized in situ, S-AuNPs-VLPs induced comparable binding and neutralizing antibody responses, but substantially superior T-cell responses. In conclusion, our study highlights the potential of conjugated AuNPs as an effective antigen-delivery system for protein-based vaccines targeting a broad spectrum of infectious diseases and other emergent viruses.

7.
Sci Immunol ; 9(98): eadk9550, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39213338

RESUMEN

Eliciting potent and broadly neutralizing antibodies (bnAbs) is a major goal in HIV-1 vaccine development. Here, we describe how germline-targeting immunogen BG505 SOSIP germline trimer 1.1 (GT1.1), generated through structure-based design, engages a diverse range of VRC01-class bnAb precursors. A single immunization with GT1.1 expands CD4 binding site (CD4bs)-specific VRC01-class B cells in knock-in mice and drives VRC01-class maturation. In nonhuman primates (NHPs), GT1.1 primes CD4bs-specific neutralizing serum responses. Selected monoclonal antibodies (mAbs) isolated from GT1.1-immunized NHPs neutralize fully glycosylated BG505 virus. Two mAbs, 12C11 and 21N13, neutralize subsets of diverse heterologous neutralization-resistant viruses. High-resolution structures revealed that 21N13 targets the same conserved residues in the CD4bs as VRC01-class and CH235-class bnAbs despite its low sequence similarity (~40%), whereas mAb 12C11 binds predominantly through its heavy chain complementarity-determining region 3. These preclinical data underpin the ongoing evaluation of GT1.1 in a phase 1 clinical trial in healthy volunteers.


Asunto(s)
Vacunas contra el SIDA , Anticuerpos Neutralizantes , Antígenos CD4 , Anticuerpos Anti-VIH , VIH-1 , Animales , Vacunas contra el SIDA/inmunología , Ratones , Humanos , Anticuerpos Anti-VIH/inmunología , Anticuerpos Neutralizantes/inmunología , VIH-1/inmunología , Antígenos CD4/inmunología , Sitios de Unión/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , Vacunación , Anticuerpos Monoclonales/inmunología , Femenino
8.
Sci Immunol ; 9(98): eadm7097, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39213340

RESUMEN

Adolescents are a growing population of people living with HIV. The period between weaning and sexual debut presents a low-risk window for HIV acquisition, making early childhood an ideal time for implementing an immunization regimen. Because the elicitation of broadly neutralizing antibodies (bnAbs) is critical for an effective HIV vaccine, our goal was to assess the ability of a bnAb B cell lineage-designed HIV envelope SOSIP (protein stabilized by a disulfide bond between gp120-gp41-named "SOS"-and an isoleucine-to-proline point mutation-named "IP"-at residue 559) to induce precursor CD4 binding site (CD4bs)-targeting bnAbs in early life. Infant rhesus macaques received either a BG505 SOSIP, based on the infant BG505 transmitted/founder virus, or the CD4bs germ line-targeting BG505 SOSIP GT1.1 (n = 5 per group). Although both strategies induced durable, high-magnitude plasma autologous virus neutralization responses, only GT1.1-immunized infants (n = 3 of 5) exhibited VRC01-like CD4bs bnAb precursor development. Thus, a multidose immunization regimen with bnAb lineage-designed SOSIPs shows promise for inducing early B cell responses with the potential to mature into protective HIV bnAbs before sexual debut.


Asunto(s)
Vacunas contra el SIDA , Anticuerpos Anti-VIH , Macaca mulatta , Animales , Anticuerpos Anti-VIH/inmunología , Vacunas contra el SIDA/inmunología , Vacunas contra el SIDA/administración & dosificación , Anticuerpos Neutralizantes/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Inmunización , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , VIH-1/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , Humanos , Células Germinativas/inmunología
9.
Commun Biol ; 7(1): 964, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122901

RESUMEN

Broadly neutralizing antibodies (bNAbs) targeting the HIV-1 envelope glycoprotein (Env) have the capacity to delay viral rebound when administered to people with HIV-1 (PWH) during anti-retroviral therapy (ART) interruption. To further enhance the performance of bNAbs through their Fc effector functions, in particular NK cell-mediated killing of HIV-1 infected cells, we have produced a panel of glyco-engineered (afucosylated) bNAbs with enhanced affinity for Fc gamma receptor IIIa. These afucosylated anti-HIV-1 bNAbs enhance NK cell activation and degranulation compared to fucosylated counterparts even at low antigen density. NK cells from PWH expressing exhaustion markers PD-1 and TIGIT are activated in a similar fashion by afucosylated bNAbs as NK cell from HIV-1 negative individuals. Killing of HIV-1 infected cells is most effective with afucosylated bNAbs 2G12, N6, PGT151 and PGDM1400, whereas afucosylated PGT121 and non-neutralizing antibody A32 only induce minor NK cell-mediated killing. These data indicate that the approach angle and affinity of Abs influence the capacity to induce antibody-dependent cellular cytotoxicity. Thus, afucosylated bNAbs have the capacity to induce NK cell-mediated killing of infected cells, which warrants further investigation of afucosylated bNAb administration in vivo, aiming for reduction of the viral reservoir and ART free durable control.


Asunto(s)
Anticuerpos ampliamente neutralizantes , Anticuerpos Anti-VIH , Infecciones por VIH , VIH-1 , Células Asesinas Naturales , Humanos , VIH-1/inmunología , Células Asesinas Naturales/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Infecciones por VIH/tratamiento farmacológico , Anticuerpos Anti-VIH/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Anticuerpos Neutralizantes/inmunología , Receptores de IgG/inmunología , Receptores de IgG/metabolismo , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Fucosa
10.
Hum Vaccin Immunother ; 20(1): 2388344, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-39165108

RESUMEN

Monoclonal neutralizing antibodies (mAbs) are considered an important prophylactic against SARS-CoV-2 infection in at-risk populations and a strategy to counteract future sarbecovirus-induced disease. However, most mAbs isolated so far neutralize only a few sarbecovirus strains. Therefore, there is a growing interest in bispecific antibodies (bsAbs) which can simultaneously target different spike epitopes and thereby increase neutralizing breadth and prevent viral escape. Here, we generate and characterize a panel of 30 novel broadly reactive bsAbs using an efficient controlled Fab-arm exchange protocol. We specifically combine some of the broadest mAbs described so far, which target conserved epitopes on the receptor binding domain (RBD). Several bsAbs show superior cross-binding and neutralization compared to the parental mAbs and cocktails against sarbecoviruses from diverse clades, including recent SARS-CoV-2 variants. BsAbs which include mAb COVA2-02 are among the most potent and broad combinations. As a result, we study the unknown epitope of COVA2-02 and show that this mAb targets a distinct conserved region at the base of the RBD, which could be of interest when designing next-generation bsAb constructs to contribute to a better pandemic preparedness.


Asunto(s)
Anticuerpos Biespecíficos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Biespecíficos/inmunología , Humanos , SARS-CoV-2/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Neutralizantes/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Epítopos/inmunología , Pruebas de Neutralización , Animales , Anticuerpos Monoclonales/inmunología
11.
PLoS Pathog ; 20(8): e1012453, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39146376

RESUMEN

Neutralization of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by human sera is a strong correlate of protection against symptomatic and severe Coronavirus Disease 2019 (COVID-19). The emergence of antigenically distinct SARS-CoV-2 variants of concern (VOCs) and the relatively rapid waning of serum antibody titers, however, raises questions about the sustainability of serum protection. In addition to serum neutralization, other antibody functionalities and the memory B cell (MBC) response are suggested to help maintaining this protection. In this study, we investigate the breadth of spike (S) protein-specific serum antibodies that mediate effector functions by interacting with Fc-gamma receptor IIa (FcγRIIa) and FcγRIIIa, and of the receptor binding domain (RBD)-specific MBCs, following a primary SARS-CoV-2 infection with the D614G, Alpha, Beta, Gamma, Delta, Omicron BA.1 or BA.2 variant. Irrespectively of the variant causing the infection, the breadth of S protein-specific serum antibodies that interact with FcγRIIa and FcγRIIIa and the RBD-specific MBC responses exceeded the breadth of serum neutralization, although the Alpha-induced B cell response seemed more strain-specific. Between VOC groups, both quantitative and qualitative differences in the immune responses were observed, suggesting differences in immunogenicity. Overall, this study contributes to the understanding of protective humoral and B cell responses in the light of emerging antigenically distinct VOCs, and highlights the need to study the immune system beyond serum neutralization to gain a better understanding of the protection against emerging variants.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , Células B de Memoria , Receptores de IgG , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , SARS-CoV-2/inmunología , COVID-19/inmunología , COVID-19/virología , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Antivirales/inmunología , Receptores de IgG/inmunología , Células B de Memoria/inmunología , Anticuerpos Neutralizantes/inmunología , Linfocitos B/inmunología , Memoria Inmunológica/inmunología
12.
medRxiv ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38766048

RESUMEN

Stabilized trimers preserving the native-like HIV envelope structure may be key components of a preventive HIV vaccine regimen to induce broadly neutralizing antibodies (bnAbs). We evaluated trimeric BG505 SOSIP.664 gp140, formulated with a novel TLR7/8 signaling adjuvant, 3M-052-AF/Alum, for safety, adjuvant dose-finding and immunogenicity in a first-in-healthy adult (n=17), randomized, placebo-controlled trial (HVTN 137A). The vaccine regimen appeared safe. Robust, trimer-specific antibody, B-cell and CD4+ T-cell responses emerged post-vaccination. Five vaccinees developed serum autologous tier-2 nAbs (ID50 titer, 1:28-1:8647) after 2-3 doses targeting C3/V5 and/or V1/V2/V3 Env regions by electron microscopy and mutated pseudovirus-based neutralization analyses. Trimer-specific, B-cell-derived monoclonal antibody activities confirmed these results and showed weak heterologous neutralization in the strongest responder. Our findings demonstrate the clinical utility of the 3M-052-AF/alum adjuvant and support further improvements of trimer-based Env immunogens to focus responses on multiple broad nAb epitopes. KEY TAKEAWAY/TAKE-HOME MESSAGES: HIV BG505 SOSIP.664 trimer with novel 3M-052-AF/alum adjuvant in humans appears safe and induces serum neutralizing antibodies to matched clade A, tier 2 virus, that map to diverse Env epitopes with relatively high titers. The novel adjuvant may be an important mediator of vaccine response.

13.
iScience ; 27(5): 109719, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38706848

RESUMEN

Zoonotic events by sarbecoviruses have sparked an epidemic (severe acute respiratory syndrome coronavirus [SARS-CoV]) and a pandemic (SARS-CoV-2) in the past two decades. The continued risk of spillovers from animals to humans is an ongoing threat to global health and a pan-sarbecovirus vaccine would be an important contribution to pandemic preparedness. Here, we describe multivalent virosome-based vaccines that present stabilized spike proteins from four sarbecovirus strains, one from each clade. A cocktail of four monovalent virosomes or a mosaic virosome preparation induced broad sarbecovirus binding and neutralizing antibody responses in mice. Pre-existing immunity against SARS-CoV-2 and extending the intervals between immunizations enhanced antibody responses. These results should inform the development of a pan-sarbecovirus vaccine, as part of our efforts to prepare for and/or avoid a next pandemic.

14.
Res Sq ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38746176

RESUMEN

There is currently no prophylactic vaccine available for human immunodeficiency virus (HIV). Research efforts have resulted in improved immunogens that mimic the native envelope (Env) glycoprotein structure. Recently, a novel triple tandem trimer (TTT) platform has been used to generate a plasmid encoding Env immunogen (pBG505-TTT) that expresses only as trimers, making it more suitable for nucleic acid vaccines. We have previously demonstrated that adenosine deaminase-1 (ADA-1) is critical to the T follicular helper (TFH) function and improves vaccine immune responses in vivo. In this study, we demonstrate that co-delivery of plasmid-encoded adenosine deaminase 1 (pADA) with pBG505-TTT enhances the magnitude, durability, isotype switching and functionality of HIV-specific antibodies in a dose-sparing manner. Co-delivery of the molecular immune modulator ADA-1 also enhances HIV-specific T cell polyfunctionality, activation, and degranulation as well as memory B cell responses. These data demonstrate that pADA enhances HIV-specific cellular and humoral immunity, making ADA-1 a promising immune modulator for HIV-targeting vaccines.

16.
bioRxiv ; 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38559180

RESUMEN

Vaccination strategies against HIV-1 aim to elicit broadly neutralizing antibodies (bnAbs) using prime-boost regimens with HIV envelope (Env) immunogens. Early antibody responses to easily accessible epitopes on these antigens are directed to non-neutralizing epitopes instead of bnAb epitopes. Autologous neutralizing antibody responses appear upon boosting once immunodominant epitopes are saturated. Here we report another type of antibody response that arises after repeated immunizations with HIV Env immunogens and present the structures of six anti-immune complexes discovered using polyclonal epitope mapping. The anti-immune complex antibodies target idiotopes composed of framework regions of antibodies bound to Env. This work sheds light on current vaccine development efforts for HIV, as well as for other pathogens, in which repeated exposure to antigen is required.

17.
Nat Commun ; 15(1): 3128, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605096

RESUMEN

One of the strategies towards an effective HIV-1 vaccine is to elicit broadly neutralizing antibody responses that target the high HIV-1 Env diversity. Here, we present an HIV-1 vaccine candidate that consists of cobalt porphyrin-phospholipid (CoPoP) liposomes decorated with repaired and stabilized clade C HIV-1 Env trimers in a prefusion conformation. These particles exhibit high HIV-1 Env trimer decoration, serum stability and bind broadly neutralizing antibodies. Three sequential immunizations of female rabbits with CoPoP liposomes displaying a different clade C HIV-1 gp140 trimer at each dosing generate high HIV-1 Env-specific antibody responses. Additionally, serum neutralization is detectable against 18 of 20 multiclade tier 2 HIV-1 strains. Furthermore, the peak antibody titers induced by CoPoP liposomes can be recalled by subsequent heterologous immunization with Ad26-encoded membrane-bound stabilized Env antigens. Hence, a CoPoP liposome-based HIV-1 vaccine that can generate cross-clade neutralizing antibody immunity could potentially be a component of an efficacious HIV-1 vaccine.


Asunto(s)
Vacunas contra el SIDA , VIH-1 , Productos del Gen env del Virus de la Inmunodeficiencia Humana , Animales , Femenino , Conejos , Anticuerpos Neutralizantes , Anticuerpos Anti-VIH , Infecciones por VIH , Inmunización , Liposomas , Fosfolípidos
18.
NPJ Vaccines ; 9(1): 74, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582771

RESUMEN

Recombinant native-like HIV-1 envelope glycoprotein (Env) trimers are used in candidate vaccines aimed at inducing broadly neutralizing antibodies. While state-of-the-art SOSIP or single-chain Env designs can be expressed as native-like trimers, undesired monomers, dimers and malformed trimers that elicit non-neutralizing antibodies are also formed, implying that these designs could benefit from further modifications for gene-based vaccination approaches. Here, we describe the triple tandem trimer (TTT) design, in which three Env protomers are genetically linked in a single open reading frame and express as native-like trimers. Viral vectored Env TTT induced similar neutralization titers but with a higher proportion of trimer-specific responses. The TTT design was also applied to generate influenza hemagglutinin (HA) trimers without the need for trimerization domains. Additionally, we used TTT to generate well-folded chimeric Env and HA trimers that harbor protomers from three different strains. In summary, the TTT design is a useful platform for the design of HIV-1 Env and influenza HA immunogens for a multitude of vaccination strategies.

19.
bioRxiv ; 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37986885

RESUMEN

A vaccine that can achieve protective immunity prior to sexual debut is critical to prevent the estimated 410,000 new HIV infections that occur yearly in adolescents. As children living with HIV can make broadly neutralizing antibody (bnAb) responses in plasma at a faster rate than adults, early childhood is an opportune window for implementation of a multi-dose HIV immunization strategy to elicit protective immunity prior to adolescence. Therefore, the goal of our study was to assess the ability of a B cell lineage-designed HIV envelope SOSIP to induce bnAbs in early life. Infant rhesus macaques (RMs) received either BG505 SOSIP or the germline-targeting BG505 GT1.1 SOSIP (n=5/group) with the 3M-052-SE adjuvant at 0, 6, and 12 weeks of age. All infant RMs were then boosted with the BG505 SOSIP at weeks 26, 52 and 78, mimicking a pediatric immunization schedule of multiple vaccine boosts within the first two years of life. Both immunization strategies induced durable, high magnitude binding antibodies and plasma autologous virus neutralization that primarily targeted the CD4-binding site (CD4bs) or C3/465 epitope. Notably, three BG505 GT1.1-immunized infants exhibited a plasma HIV neutralization signature reflective of VRC01-like CD4bs bnAb precursor development and heterologous virus neutralization. Finally, infant RMs developed precursor bnAb responses at a similar frequency to that of adult RMs receiving a similar immunization strategy. Thus, a multi-dose immunization regimen with bnAb lineage designed SOSIPs is a promising strategy for inducing protective HIV bnAb responses in childhood prior to adolescence when sexual HIV exposure risk begins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...