Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 54(25): 7598-611, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26368883

RESUMEN

A multispectral instrument based on Raman, laser-induced fluorescence (LIF), laser-induced breakdown spectroscopy (LIBS), and a lidar system provides high-fidelity scientific investigations, scientific input, and science operation constraints in the context of planetary field campaigns with the Jupiter Europa Robotic Lander and Mars Sample Return mission opportunities. This instrument conducts scientific investigations analogous to investigations anticipated for missions to Mars and Jupiter's icy moons. This combined multispectral instrument is capable of performing Raman and fluorescence spectroscopy out to a >100 m target distance from the rover system and provides single-wavelength atmospheric profiling over long ranges (>20 km). In this article, we will reveal integrated remote Raman, LIF, and lidar technologies for use in robotic and lander-based planetary remote sensing applications. Discussions are focused on recently developed Raman, LIF, and lidar systems in addition to emphasizing surface water ice, surface and subsurface minerals, organics, biogenic, biomarker identification, atmospheric aerosols and clouds distributions, i.e., near-field atmospheric thin layers detection for next robotic-lander based instruments to measure all the above-mentioned parameters.

2.
Appl Opt ; 52(14): 3116-26, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23669823

RESUMEN

This paper describes a prototype feasibility demonstration system of a multipurpose Raman-fluorescence spectrograph and compact lidar system suitable for planetary sciences missions. The key measurement features of this instrument are its abilities to: i) detect minerals and organics at low levels in the dust constituents of surface, subsurface material and rocks on Mars, ii) determine the distribution of trace fluorescent ions with time-resolved fluorescence spectroscopy to learn about the geological conditions under which these minerals formed, iii) inspect material toxicity from a mobile robotic platform during local site characterization, iv) measure dust aerosol and cloud distributions, v) measure near-field atmospheric carbon dioxide, and vi) identify surface CO(2)-ice, surface water ice, and surface or subsurface methane hydrate. This prototype instrument and an improved follow-on design are described and have the capability for scientific investigations discussed above, to remotely investigate geological processes from a robotic platform at more than a 20-m radial distance with potential to go beyond 100 m. It also provides single wavelength (532 nm) aerosol/cloud profiling over very long ranges (>10 km with potential to 20 km). Measurement results obtained with this prototype unit from a robotic platform and calculated potential performance are presented in this paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...