Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Lancet Oncol ; 25(4): 488-500, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38547893

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma is characterised by low immunogenicity and an immunosuppressive tumour microenvironment. LOAd703, an oncolytic adenovirus with transgenes encoding TMZ-CD40L and 4-1BBL, lyses cancer cells selectively, activates cytotoxic T cells, and induces tumour regression in preclinical models. The aim of this study was to evaluate the safety and feasibility of combining LOAd703 with chemotherapy for advanced pancreatic ductal adenocarcinoma. METHODS: LOKON001 was a non-randomised, phase 1/2 study conducted at the Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA, and consisted of two arms conducted sequentially; the results of arm 1 are presented here. In arm 1, patients 18 years or older with previously treated or treatment-naive unresectable or metastatic pancreatic ductal adenocarcinoma were treated with standard 28-day cycles of intravenous nab-paclitaxel 125 mg/m2 plus gemcitabine 1000 mg/m2 (up to 12 cycles) and intratumoural injections of LOAd703 every 2 weeks. Patients were assigned using Bayesian optimal interval design to receive 500 µL of LOAd703 at 5 × 1010 (dose 1), 1 × 1011 (dose 2), or 5 × 1011 (dose 3) viral particles per injection, injected endoscopically or percutaneously into the pancreatic tumour or a metastasis for six injections. The primary endpoints were safety and treatment-emergent immune response in patients who received at least one dose of LOAd703, and antitumour activity was a secondary endpoint. This study was registered with ClinicalTrials.gov, NCT02705196, arm 2 is ongoing and open to new participants. FINDINGS: Between Dec 2, 2016, and Oct 17, 2019, 23 patients were assessed for eligibility, leading to 22 patients being enrolled. One patient withdrew consent, resulting in 21 patients (13 [62%] men and eight [38%] women) assigned to a dose group (three to dose 1, four to dose 2, and 14 to dose 3). 21 patients were evaluable for safety. Median follow-up time was 6 months (IQR 4-10), and data cutoff was Jan 5, 2023. The most common treatment-emergent adverse events overall were anaemia (96 [8%] of 1237 events), lymphopenia (86 [7%] events), hyperglycaemia (70 [6%] events), leukopenia (63 [5%] events), hypertension (62 [5%] events), and hypoalbuminaemia (61 [5%] events). The most common adverse events attributed to LOAd703 were fever (14 [67%] of 21 patients), fatigue (eight [38%]), chills (seven [33%]), and elevated liver enzymes (alanine aminotransferase in five [24%], alkaline phosphatase in four [19%], and aspartate aminotransferase in four [19%]), all of which were grade 1-2, except for a transient grade 3 aminotransferase elevation occurring at dose 3. A maximum tolerated dose was not reached, thereby establishing dose 3 as the highest-evaluated safe dose when combined with nab-paclitaxel plus gemcitabine. Proportions of CD8+ effector memory cells and adenovirus-specific T cells increased after LOAd703 injections in 15 (94%) of 16 patients for whom T-cell assays could be performed. Eight (44%, 95% CI 25-66) of 18 patients evaluable for activity had an objective response. INTERPRETATION: Combining LOAd703 with nab-paclitaxel plus gemcitabine in patients with advanced pancreatic ductal adenocarcinoma was feasible and safe. To build upon this novel chemoimmunotherapeutic approach, arm 2 of LOKON001, which combines LOAd703, nab-paclitaxel plus gemcitabine, and atezolizumab, is ongoing. FUNDING: Lokon Pharma, the Swedish Cancer Society, and the Swedish Research Council.


Asunto(s)
Adenocarcinoma , Anemia , Virus Oncolíticos , Neoplasias Pancreáticas , Trombocitopenia , Masculino , Humanos , Femenino , Gemcitabina , Virus Oncolíticos/genética , Teorema de Bayes , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/tratamiento farmacológico , Paclitaxel , Anemia/inducido químicamente , Trombocitopenia/inducido químicamente , Adenocarcinoma/terapia , Adenocarcinoma/tratamiento farmacológico , Albúminas , Terapia Genética/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Microambiente Tumoral
2.
Mol Cancer Ther ; 20(2): 238-249, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33273059

RESUMEN

The RAS-regulated RAF-MEK1/2-ERK1/2 (RAS/MAPK) signaling pathway is a major driver in oncogenesis and is frequently dysregulated in human cancers, primarily by mutations in BRAF or RAS genes. The clinical benefit of inhibitors of this pathway as single agents has only been realized in BRAF-mutant melanoma, with limited effect of single-agent pathway inhibitors in KRAS-mutant tumors. Combined inhibition of multiple nodes within this pathway, such as MEK1/2 and ERK1/2, may be necessary to effectively suppress pathway signaling in KRAS-mutant tumors and achieve meaningful clinical benefit. Here, we report the discovery and characterization of AZD0364, a novel, reversible, ATP-competitive ERK1/2 inhibitor with high potency and kinase selectivity. In vitro, AZD0364 treatment resulted in inhibition of proximal and distal biomarkers and reduced proliferation in sensitive BRAF-mutant and KRAS-mutant cell lines. In multiple in vivo xenograft models, AZD0364 showed dose- and time-dependent modulation of ERK1/2-dependent signaling biomarkers resulting in tumor regression in sensitive BRAF- and KRAS-mutant xenografts. We demonstrate that AZD0364 in combination with the MEK1/2 inhibitor, selumetinib (AZD6244 and ARRY142886), enhances efficacy in KRAS-mutant preclinical models that are moderately sensitive or resistant to MEK1/2 inhibition. This combination results in deeper and more durable suppression of the RAS/MAPK signaling pathway that is not achievable with single-agent treatment. The AZD0364 and selumetinib combination also results in significant tumor regressions in multiple KRAS-mutant xenograft models. The combination of ERK1/2 and MEK1/2 inhibition thereby represents a viable clinical approach to target KRAS-mutant tumors.


Asunto(s)
Bencimidazoles/uso terapéutico , Imidazoles/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Pirazinas/uso terapéutico , Pirimidinas/uso terapéutico , Animales , Bencimidazoles/farmacología , Modelos Animales de Enfermedad , Humanos , Imidazoles/farmacología , Ratones , Ratones Desnudos , Pirazinas/farmacología , Pirimidinas/farmacología
3.
J Immunother Cancer ; 7(1): 328, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31779705

RESUMEN

BACKGROUND: The ability to modulate immune-inhibitory pathways using checkpoint blockade antibodies such as αPD-1, αPD-L1, and αCTLA-4 represents a significant breakthrough in cancer therapy in recent years. This has driven interest in identifying small-molecule-immunotherapy combinations to increase the proportion of responses. Murine syngeneic models, which have a functional immune system, represent an essential tool for pre-clinical evaluation of new immunotherapies. However, immune response varies widely between models and the translational relevance of each model is not fully understood, making selection of an appropriate pre-clinical model for drug target validation challenging. METHODS: Using flow cytometry, O-link protein analysis, RT-PCR, and RNAseq we have characterized kinetic changes in immune-cell populations over the course of tumor development in commonly used syngeneic models. RESULTS: This longitudinal profiling of syngeneic models enables pharmacodynamic time point selection within each model, dependent on the immune population of interest. Additionally, we have characterized the changes in immune populations in each of these models after treatment with the combination of α-PD-L1 and α-CTLA-4 antibodies, enabling benchmarking to known immune modulating treatments within each model. CONCLUSIONS: Taken together, this dataset will provide a framework for characterization and enable the selection of the optimal models for immunotherapy combinations and generate potential biomarkers for clinical evaluation in identifying responders and non-responders to immunotherapy combinations.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Inmunomodulación/efectos de los fármacos , Animales , Biomarcadores de Tumor , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Perfilación de la Expresión Génica , Humanos , Inmunofenotipificación , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Microambiente Tumoral
4.
Eur J Immunol ; 47(2): 385-393, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27873300

RESUMEN

Checkpoint blockade of CTLA-4 results in long-lasting survival benefits in metastatic cancer patients. However, patients treated with CTLA-4 blockade have suffered from immune-related adverse events, most likely due to the breadth of the induced T-cell activation. Here, we investigated the efficacy of a local low-dose anti-CTLA-4 administration for treatment of subcutaneous or orthotopic murine bladder 49 (MB49) bladder carcinoma in C57BL/6 mice. When MB49 tumors were grown s.c., peritumoral (p.t.) injection of anti-CTLA-4 treatment was equally effective as intravenous or s.c. (nontumor bearing flank) administration. Notably, p.t. injection was associated with lower circulating antibody levels and decreased IL-6 serum levels as compared to systemic treatment. Ultrasound-guided intratumoral anti-CTLA-4 antibody treatment of orthotopically growing MB49 tumors resulted in tumor regression, with more than tenfold reduction in systemic antibody levels as compared to i.v. or s.c. administration, in line with the compartmentally restrained nature of the bladder. Local anti-CTLA-4 therapy in combination with anti-PD-1 therapy resulted in complete responses, superior to each therapy alone. In addition, p.t. anti-CTLA-4 therapy was potentiated by depletion of regulatory T cells. Our results demonstrate that local anti-CTLA-4 antibody therapy is equally effective as systemic administration, but reduces systemic antibody levels and cytokine release, and enhances the response to anti-PD1 therapy.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Antígeno CTLA-4/inmunología , Inhibidores de Crecimiento/uso terapéutico , Inmunoterapia/métodos , Receptor de Muerte Celular Programada 1/inmunología , Linfocitos T Reguladores/inmunología , Neoplasias de la Vejiga Urinaria/terapia , Animales , Línea Celular Tumoral , Citocinas/metabolismo , Quimioterapia Combinada , Depleción Linfocítica , Masculino , Ratones , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Neoplasias Experimentales , Neoplasias de la Vejiga Urinaria/inmunología
5.
Oncoimmunology ; 3(1): e27400, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24701374

RESUMEN

Local immunotherapy resurfaces in the field of cancer as a potential way to cure localized and metastatic disease with limited toxic effects. We have recently demonstrated that local administration of agonistic CD40 antibodies can cure localized as well as disseminated bladder neoplasms. This approach reduces the circulating concentrations of antibodies that would result from systemic delivery, hence resulting in limited toxicity.

6.
Oncoimmunology ; 3(1): e27614, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24701377

RESUMEN

Antibody-mediated blockade of CTLA4 has been shown to be effective in treating a select group of patients with late-stage melanoma. The precise mechanism underlying the clinical activity of CTLA4 immunotherapy is poorly understood, although recent experimental findings indicate that antibody-mediated depletion of regulatory T cells (Tregs) in the tumor microenvironment plays a key role in efficacious antitumor responses. In the current study, we used an experimental model of pancreatic adenocarcinoma to compare the antitumor efficacy of peritumoral low-dose anti-CTLA4 monoclonal antibody (mAb) administration to that of a commonly utilized systemic high-dose anti-CTLA4 regimen. We selected pancreatic adenocarcinoma as it presents a particular challenge to clinicians due to its aggressive behavior, metastatic spread and limited treatment options. Furthermore, Fc gamma receptor (FcγR)-dense myeloid cells commonly infiltrate pancreatic tumors, such that these tumor types exhibit increased susceptibility to CTLA4 antibody-targeted Treg depletion via antibody-dependent cell-mediated cytotoxicity (ADCC). Locally administered anti-CTLA4 mAb effectively reduced tumor growth at a low dose and no additional anti-tumor effects were apparent when increasing the dose or number of injections. No significant difference in overall survival was seen when comparing locally administered low-dose with standard systemic high-dose CTLA4 blockade therapy, and both delivery routes led to increased tumor-infiltrating effector T cells and reduced Treg cells. As opposed to low-dose peritumoral treatment, high-dose systemic therapy stimulated the accumulation of Tregs in secondary lymphoid organs, an effect that could potentially counteract the antitumor immunotherapeutic benefit of CTLA4 blockade. Our study confirms previous findings that local administration of low-dose anti-CTLA4 antibody generates sustained antitumor effects and provides rationale to devise ultrasound-guided intratumoral anti-CTLA4 antibody injection regimens to treat patients with pancreatic adenocarcinoma and other types of solid tumors. In support, clinical relevancy could include reduced immune-related adverse events by limiting systemic antibody spread to immune cell-dense organs.

7.
Cancer Immunol Res ; 2(1): 80-90, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24778163

RESUMEN

Immunotherapy with intratumoral injection of adenoviral vectors expressing CD40L has yielded positive results in experimental and clinical bladder cancer. We therefore hypothesized that anti-CD40 antibody would be effective in this setting. Agonistic CD40 antibodies were developed as vaccine adjuvants but have later been used as treatment of advanced solid tumors and hematologic cancers. Systemic anti-CD40 therapy has been associated with immune-related adverse events, such as cytokine release syndrome and liver toxicity, and local delivery is an attractive approach that could reduce toxicity. Herein, we compared local and systemic anti-CD40 antibody delivery to evaluate efficacy, toxicity, and biodistribution in the experimental MB49 bladder cancer model. Antitumor effects were confirmed in the B16 model. In terms of antitumor efficacy, local anti-CD40 antibody stimulation was superior to systemic therapy at an equivalent dose and CD8 T cells were crucial for tumor growth inhibition. Both administration routes were dependent on host CD40 expression for therapeutic efficacy. In vivo biodistribution studies revealed CD40-specific antibody accumulation in the tumor-draining lymph nodes and the spleen, most likely reflecting organs with frequent target antigen-expressing immune cells. Systemic administration led to higher antibody concentrations in the liver and blood compared with local delivery, and was associated with elevated levels of serum haptoglobin. Despite the lack of a slow-release system, local anti-CD40 therapy was dependent on tumor antigen at the injection site for clearance of distant tumors. To summarize, local low-dose administration of anti-CD40 antibody mediates antitumor effects in murine models with reduced toxicity and may represent an attractive treatment alternative in the clinic.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Antígenos CD40/inmunología , Tejido Linfoide/metabolismo , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/patología , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/farmacocinética , Antígenos de Neoplasias/inmunología , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Antígenos CD40/agonistas , Antígenos CD40/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Inyecciones Intralesiones , Ratones , Distribución Tisular , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/mortalidad
8.
Biomaterials ; 33(26): 6230-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22687756

RESUMEN

Agonistic anti-CD40 monoclonal antibodies (mAbs) hold great potential for cancer immunotherapy. However, systemic administration of anti-CD40 mAbs can be associated with severe side effects, such as cytokine release syndrome and liver damage. With the aim to increase the immunostimulatory potency as well as to achieve a local drug retention of anti-CD40 mAbs, we linked an agonistic mAb to immune activating amphiphilic poly(γ-glutamic acid) nanoparticles (γ-PGA NPs). We demonstrate that adsorption of anti-CD40 mAb to γ-PGA NPs (anti-CD40-NPs) improved the stimulatory capacity of the CD40 agonist, resulting in upregulation of costimulatory CD80 and CD86 on antigen-presenting cells, as well as IL-12 secretion. Interestingly, anti-CD40-NPs induced strong synergistic proliferative effects in B cells, possibly resulting from a higher degree of CD40 multimerization, enabled by display of multiple anti-CD40 mAbs on the NPs. In addition, local treatment with anti-CD40-NPs, compared to only soluble CD40 agonist, resulted in a significant reduction in serum levels of IL-6, IL-10, IL-12 and TNF-α in a bladder cancer model. Taken together, our results suggest that anti-CD40-NPs are capable of synergistically enhancing the immunostimulatory effect induced by the CD40 agonist, as well as minimizing adverse side effects associated with systemic cytokine release. This concept of nanomedicine could play an important role in localized immunotherapy of cancer.


Asunto(s)
Células Presentadoras de Antígenos/metabolismo , Antígenos CD40/metabolismo , Nanopartículas/química , Nanopartículas/uso terapéutico , Ácido Poliglutámico/análogos & derivados , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Antígenos CD40/inmunología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Sistemas de Liberación de Medicamentos , Femenino , Citometría de Flujo , Humanos , Ratones , Ácido Poliglutámico/química , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/inmunología
9.
J Immunother ; 33(3): 225-35, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20445343

RESUMEN

Tumor immunotherapy aims to break effector T-cell anergy and to block suppressive cell types and ligands allowing effector cells to exert tumor eradication. Previous reports demonstrate that cytotoxic T lymphocyte antigen-4 (CTLA-4)-blocking antibodies promote T-cell activation and render T effector cells resistant to T regulatory cells (Tregs) whereas programmed death receptor-1 (PD-1)/PD-L1 blockade results in loss of peripheral tolerance. Herein, we explored single or combined antibody blockade of CTLA-4 and PD-1 alone or combined with the toll-like receptor agonists CpG or bacillus Calmette-Guérin for treatment of murine experimental bladder cancer. In therapeutic studies, tumors were rejected by anti-CTLA-4 (aCTLA-4) while anti-PD-1 (aPD-1) suppressed tumor growth. The combination had no additive effect compared with aCTLA-4 alone. However, elevated levels of circulating CD107a expressing CD8 T cells were found in the aCTLA-4 plus aPD-1 group. In addition, levels of antinuclear antibodies correlated inversely with tumor size. Next, we combined CpG or bacillus Calmette-Guérin with aCTLA-4, aPD-1, or aPD-L1 and found that CpG in combination with aCTLA-4 or aPD-1 increased the survival of mice, with aPD-1 plus CpG being superior to either agent alone. CpG plus aCTLA-4 or aPD-1 increased the numbers of circulating tumor-specific CD107a expressing CD8 T cells as well as activated (CD25FoxP3-) CD4 splenocytes. Further, we investigated the numbers of Tregs in the tumor area of treated animals and detected decreased levels after aCTLA-4 or aPD-1 plus CpG therapy. Thus, the combination of CpG with CTLA-4 or PD-1 blockade improved long-term survival and led to increased levels of tumor-reactive T cells and reduced numbers of Tregs at the tumor site.


Asunto(s)
Anticuerpos/inmunología , Antígenos CD/inmunología , Antígenos de Superficie/inmunología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Proteínas Reguladoras de la Apoptosis/inmunología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Animales , Anticuerpos/administración & dosificación , Antígenos de Superficie/genética , Antígenos de Superficie/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Vacuna BCG/administración & dosificación , Vacuna BCG/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Antígeno CTLA-4 , Línea Celular Tumoral , Femenino , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Oligodesoxirribonucleótidos/administración & dosificación , Receptor de Muerte Celular Programada 1 , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Resultado del Tratamiento , Carga Tumoral/efectos de los fármacos , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología
10.
J Immunother ; 32(8): 785-92, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19752755

RESUMEN

CD40 ligand (CD40L) is one of the most potent stimulators of Th1-type immunity through its maturation of dendritic cells that, in turn, stimulate effector cells such as T cells and NK cells. Lately, CD40-mediated cell growth inhibition and apoptosis have been in focus for the development of novel cancer treatment regiments, including recombinant soluble CD40L or CD40-stimulating antibodies. In this study, intravesical CD40L gene transfer through adenoviral vectors (AdCD40L) was used to treat an aggressive model of disseminated bladder cancer (MB49/C57BL/6). Three weekly AdCD40L vector instillations increased overall survival of tumor-bearing mice (mean 18.5 d, control mice 13 d). Furthermore, bladder tumors were eradicated (2 of 10) simultaneously as lung metastases (6 of 10) were cleared. FoxP3 levels were similar in the tumors of AdCD40L-treated mice and control mice but the tumor-infiltrating effector T cells in AdCD40L-treated mice were cytotoxic (CD107a+) in contrast to those in control-treated tumors. Furthermore, AdCD40L gene therapy could induce cell growth inhibition and cell death in the MB49 tumor cells in vitro and in vivo. However, this effect was not potent enough to cure growing tumors in immunodeficient mice. In conclusion, AdCD40L gene therapy is potent for disseminated cancer both by activation of T cells and controlling tumor cell growth and viability.


Asunto(s)
Ligando de CD40/genética , Ligando de CD40/metabolismo , Terapia Genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/inmunología , Adenoviridae , Animales , Apoptosis , Ligando de CD40/inmunología , Procesos de Crecimiento Celular , Citotoxicidad Inmunológica , Vectores Genéticos , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/terapia , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/patología , Proteína 1 de la Membrana Asociada a los Lisosomas/biosíntesis , Ratones , Ratones Endogámicos C57BL , Carga Tumoral , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...