Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Asunto principal
Intervalo de año de publicación
1.
Int J Biol Macromol ; 265(Pt 2): 131260, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38599904

RESUMEN

Preconditioning processes in proteins play a crucial role in enhancing their functional properties as surface active agents. Whey protein isolate (WPI, 20 wt%) was preconditioned via temperature (WPIT, 90 °C) or ultrasound (WPIUS, 20 kHz, 80 % amplitude). FTIR and zeta potential analysis demonstrated the effect of the preconditioning process on the secondary structure and surface properties of WPI. WPI-Alginate:Inulin (AI) complex coacervates (CCWPI:AI) were formed at pH 3.0 using WPIT and WPIUS, and the associative electrostatic interactions between WPI-AI led to coacervation yields >90 %, influenced by the preconditioning process employed. Viscoelastic properties outlined a predominantly solid-like behavior (G´ > G"). The CCWPI:AI system based on WPIT showed enhanced strength and gel-like structure compared to the WPIUS-based system. Oil-in-water (O/W) emulgels were formed and stabilized with the CCWPI:AI complexes, exhibiting spherical droplets (93.3-292.8 µm), whereas texture and rheological properties highlighted the formation of gel-like systems. The centrifugation STEP technology was used to evaluate the physical stability of emulgels, WPIT-based emulgels displayed superior stability against creaming than untreated WPI and WPIUS-based emulgels. These findings provide a basis for developing emulgels with prolonged stability and tunable functional properties, tailoring enhanced viscoelastic and texture attributes to meet specific needs for industrial applications where gel-like properties are pursued.


Asunto(s)
Inulina , Proteína de Suero de Leche/química , Temperatura , Emulsiones/química
2.
Foods ; 13(6)2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38540834

RESUMEN

Plant-based beverages have gained consumers' attention for being the main substitutes for dairy milk, especially for people with lactose intolerance, milk allergies, and a prevalence of hypercholesterolemia. Moreover, there is a growing demand for a more sustainable diet and plant-based lifestyle due to concerns related to animal wellbeing, environmental impacts linked to dairy production, and the rising cost of animal-derived foods. However, there are some factors that restrict plant-based beverage consumption, including their nutritional quality and poor sensory profile. In this context, fermentation processes can contribute to the improvement of their sensory properties, nutritional composition, and functional/bioactive profile. In particular, the fermentation process can enhance flavor compounds (e.g., acetoin and acetic acid) while decreasing off-flavor components (e.g., hexanal and hexanol) in the substrate. Furthermore, it enhances the digestibility and bioavailability of nutrients, leading to increased levels of vitamins (e.g., ascorbic acid and B complex), amino acids (e.g., methionine and tryptophan), and proteins, while simultaneously decreasing the presence of anti-nutritional factors (e.g., phytic acid and saponins). In contrast, plant-based fermented beverages have been demonstrated to possess diverse bioactive compounds (e.g., polyphenols and peptides) with different biological properties (e.g., antioxidant, anti-inflammatory, and antihypertensive). Therefore, this article provides an overview of plant-based fermented beverages including their production, technological aspects, and health benefits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA