RESUMEN
BACKGROUND: Malnutrition is a common problem in developing countries, and the impact of severe malnutrition on optimal treatment outcomes of chemotherapy in pediatric cancer patients is well documented. However, despite being a more prevalent and distinct entity, moderate malnutrition is until now unexplored for its effects on treatment outcomes. AIMS: In this study we aimed to investigate the molecular basis of altered pharmacokinetics and cardiotoxicity of doxorubicin observed in early-life chronic moderate protein deficiency malnutrition. MATERIALS AND METHODS: We developed an animal model of early-life moderate protein-deficiency malnutrition and validated it using clinical samples. This model was used to study pharmacokinetic and toxicity changes and was further utilized to study the molecular changes in liver and heart to get mechanistic insights. KEY FINDINGS: Here we show that moderate protein-deficiency malnutrition in weanling rats causes changes in drug disposition in the liver by modification of hepatic ABCC3 and MRP2 transporters through the TNFα signalling axis. Furthermore, malnourished rats in repeat-dose doxorubicin toxicity study showed higher toxicity and mortality. A higher accumulation of doxorubicin in the heart was observed which was associated with alterations in cardiac metabolic pathways and increased cardiotoxicity. SIGNIFICANCE: Our findings indicate that moderate malnutrition causes increased susceptibility towards toxic side effects of chemotherapy. These results may necessitate further investigations and new guidelines on the dosing of chemotherapy in moderately malnourished pediatric cancer patients.