Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 465: 133124, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38142658

RESUMEN

In actual lakes, the "unstable components" of macrophyte-derived DOM (MDOM) are always degraded and cannot exist abidingly, but the environmental impact brought by it is ignored. In this study, MDOM from Potamogeton crispus was extracted to carry out microbial combined photodegradation (M-Photodegradation) and fluorescence titration experiments. Then the traits and metal binding reaction of MDOM under M-Photodegradation were analysed and compared with the features of lake-derived DOM (LDOM) from point monitoring of Dongping Lake through EEM-PARAFAC, 2D-SF-COS, and 2D-FTIR-COS. The results showed that the features of MDOM after M-Photodegradation were closer to those of LDOM. The degradation amplitudes were 93.53% ± 0.53% for C4 in microbial degradation and 78.31% ± 0.74% for C3 in photodegradation. Correspondingly, both were hardly detected in LDOM. Protein-like substances and aliphatic C-OH were preferentially selected by Cu2+, while humic-like matter and phenolic hydroxyl O-H responded faster to Pb2+. Although the binding sequences remained unchanged after M-Photodegradation, the LogKCu and LogKPb of components decreased overall, indicating increased environmental risks. This study proves that the refractory MDOM retained after degradation was more consistent with the actual state of macrophytic lakes and provides more information for the treatment of heavy metal pollution in lakes.


Asunto(s)
Lagos , Plomo , Espectrometría de Fluorescencia/métodos , Lagos/química , Plomo/análisis , Fotólisis , Sustancias Húmicas/análisis , Análisis Factorial
2.
Water Res ; 231: 119605, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36680825

RESUMEN

The nature of sediment dissolved organic matter (SDOM) can reflect the environmental background, nutritional status and human activities and is an important part of lakes. The differences in the binding capacity of heavy metals and organic matter in lake sediments with different trophic states at the catchment scale and the mechanism of the differences in binding are still unclear. To solve this problem, we collected bulk SDOMs (< 0.7 µm) from 6 respective lakes (from upstream to downstream) in the Yangtze River Basin (YRB) to qualitatively and quantitatively characterize their properties and metal binding behaviors using excitation-emission matrix spectroscopy combined with parallel factor analysis (EEM-FARAFAC) and two-dimensional correlation spectroscopy of synchronous fluorescence spectroscopy and Fourier transform infrared spectroscopy (2D-SF-COS and 2D-FTIR-COS). The results showed that sediment dissolved organic carbon (SDOC) was mainly enriched in low molecular weight (LMW: < 1 kDa) fractions. The total fluorescence intensity (Fmax) of SDOM from upstream was larger than that from downstream (p = 0.033), and humic-like fluorophores were dominant in these lakes. The Fmax of sediment humic-like components (C1+C2) was closely related to the trophic levels of the lakes. Protein-like substances and oxygen-containing functional groups (C-OH, C=O, and C-O) were preferred in the reaction between SDOM and copper (Cu2+) or cadmium (Cd2+), while a unique binding path was exhibited in the moderately eutrophic DCL. In terms of fluorophore types, higher Cu2+-binding abilities (LogKCu) were observed in the humic-like matter for the lakes in the upper reaches and tryptophan-like matter for the lakes from the midstream and downstream areas of the YRB. Although Cd2+ complexed only with humic-like matter, LogKCd was higher than LogKCu. In terms of molecular weight (MW), the LogKCu/Cd of components were enhanced after MW fractionation. The HMW (0.7 µm - 1 kDa) components possessed higher LogKCu in most lakes (except for CHL and C4). The different fluorophores and molecular weight fractions in SDOM make an important contribution to reducing the ecological risks of heavy metals in lakes.


Asunto(s)
Materia Orgánica Disuelta , Metales Pesados , Cadmio/análisis , Sustancias Húmicas/análisis , Lagos/química , Metales Pesados/análisis , Estado Nutricional , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA