Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(13): 15357-15371, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38585139

RESUMEN

The connectivity and permeability of the coal seam pore structures control the occurrence and migration of coalbed methane. Coal samples were used from Huainan-Huaibei to reconstruct three-dimensional models of the pores and an equivalent pore network model, Statistical pore structure characteristic parameters. The pore structure of the coal reservoir was analyzed from the direction of multidimensional and multiangle. It shows that based on quantitative analysis, the representative Elementary volume of 500 × 500 × 500 was the most suitable experimental volume. The Y-axis direction of the Renlou sample had poor pore connectivity compared to that of other samples. Large volume connected pores dominated their pore systems. In terms of coal sample pore connectivity, the coal samples from the Liuzhuang and Qidong regions had pore connectivity better than those from the other regions. The pore connectivity of the Liuzhuang coal samples was the best. In terms of coal permeability, the Liuzhuang sample had better permeability than the other three samples, and the permeability was the best in the Y-axis direction. For all the combinations of the different types of throats, the shorter the throat, the greater the equivalent radius and the better the permeability. Conversely, the worse the permeability. During gas injection production, the closer the gas injection area was to the gas injection well, the poorer the connectivity and the lower the permeability over time. Near the production area, where the CO2 did not reach the production area, the fracture porosity and effective connected porosity of the coal reservoir increased over time. When CO2 reached the production area, the change in its connected pore structure was consistent with the change in the connected pores in the gas injection area. With this study, the coal seam pore structure on a microscale was characterized. A comprehensive analysis of the coal reservoir pore connectivity and permeability was completed. The study results are significant for the exploration and development of coalbed methane in the Huainan-Huaibei coalfield.

2.
Heliyon ; 9(9): e19558, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809915

RESUMEN

As an important component of coal structure, the macropores have a great influence on CBM recovery. In this paper, the macropores characteristic of two coal samples collected from 3# coal seam in the south of Qinshui Basin, China was analyzed on the basic of mercury intrusion porosimetry, and a fully coupled triple-porosity/double permeability mathematical model for CBM recovery was established according to the physical structure of coal and the non-Darcy flow of methane in macropores. Then, the various factors affecting the macropores permeability were discussed and the influence of size distribution and connectivity of macropores on CBM recovery was investigated. The following conclusions have been drawn from these efforts: (1) in 3# coal seam of the south of Qinshui Basin, the macropores have an extremely heterogeneous pore size distribution with the high variation, and their connectivity is not good because they are mainly composed of the conical and cylindrical pores with one dead end and the open pores, the structure characteristics of macropores are not conducive to CBM recovery; (2) the fully coupled triple-porosity/double permeability mathematical model containing the non-Darcy flow of methane in the macropores includes the methane occurrence-migration field, hydraulic field, thermal field and stress field as well as the complex intercoupling between them, and the model was verified by the fitting of methane production history, with an average error of 3.24%; (3) the macropores permeability is closely related to the Knudsen number controlled by methane pressure and temperature in macropores and the intrinsic permeability which is an internal attribute of macropores affected by size distribution and connectivity of pore; (4) the pressure drop of reservoir plays a major role in the macropores permeability, which promotes the increase of macropores permeability with time, and the high intrinsic permeability of macropores corresponding to the good pore size distribution and connectivity is more conducive to the improvement of fracture permeability and methane production rate of coal reservoir during CBM recovery. It is recommended that coal seams including the macropores with uniform size distribution and good connectivity should be preferentially used for the development of CBM.

3.
ACS Omega ; 8(21): 18964-18980, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37273609

RESUMEN

To reveal how mineral changes affect a coal pore structure in the presence of water, an autoclave was used to carry out the supercritical CO2 (ScCO2)-H2O-coal interaction process. To reveal the changes in pore complexity, mercury intrusion capillary pressure (MICP), low-pressure nitrogen adsorption, CO2 adsorption, and field emission scanning electron microscopy (FESEM) experiments were combined with fractal theory. The experimental data of MICP show that the MICP data are meaningful only for the pore fractal dimension with pore sizes >150 nm. Therefore, the pores were classified into the classes >150, 2-150, and <2 nm. The results show that the pore volume and specific surface area of the coal increased significantly after the reaction. ScCO2-H2O can cause the formation of many new pores and fractures in the coal. The presence of H2O may increase the potential for the injection of CO2 into the coal seam. The complete dissolution of calcite surfaces caused a significant increase in the pore volume and specific surface area of the pores >150 nm. The morphologies of these pores are controlled by the morphologies of the complete dissolution carbonate particles. The pore morphologies were relatively uniform, and the fractal dimensions decreased. However, the incomplete dissolution of calcite leads to irregular variations in the morphologies for the pores in the 2-150 nm pore size range. The pore morphologies that are produced by incompletely dissolved calcite particles are more complex, which increases the fractal dimensions after the reaction. The fractal dimensions of the pores <2 nm decreased after the reaction, indicating that the newly generated micropores were more uniform and had regular pore morphologies.

4.
ACS Omega ; 8(13): 11852-11867, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37033855

RESUMEN

The connectivity of the pore/fracture system is the key to CO2 injection and CH4 production, which is of great significance in analyzing the correlation and weight of the influencing factors affecting the connectivity on the microscale. First, the 3D reconstruction of the coal reservoir is realized. Second, the characteristic parameters of pore/fracture structures are analyzed. Next, the characteristics of absolute permeability are analyzed, and then the correlation and weight analysis of the influencing factors are realized. Finally, the schematic analysis and application discussion of the influencing factors are carried out. The results show that porosity is the key factor restricting fluid migration. The heterogeneity of the reservoir can be characterized by the volume changes of the pore/fracture, organic matter, and mineral. The interconnected pores/fractures are mainly distributed in sheets and bands. The coordination number ranges from 1 to 15. The Ferret diameter is 0-10 µm. The tortuosity is 2.27111, 1.9034, 3.98522, and 3.51516, respectively, and the Euler characteristic number is 0.931868, 0.974719, 0.921144, and 0.897697, respectively. The permeability of the SH and YW samples is higher than that of the RL and PY samples. The single weight of the influencing factor is as follows: coordination number > Ferret diameter > Euler characteristic number > porosity > tortuosity. The analysis area of the comprehensive evaluation score of the influencing factors and the permeability value can be divided into three grades. There is a positive correlation among the coordination number, the quantity equilibrium of pores and throats, and the connectivity. The shape factor gradually increases with the increase of the Ferret diameter. The reservoir permeability is indirectly characterized by the coordination number, Ferret diameter, tortuosity, Euler characteristic number, and shape factor. This study can provide new ideas for clarifying the correlation degree and weight value of the characteristic parameters and can enrich the development of 3D digital core and CO2-ECBM technology.

5.
Environ Pollut ; 316(Pt 1): 120613, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36351484

RESUMEN

The percolation-degradation process of soluble domestic pollution is very important for the evolution of soil properties and the formation of contaminated sites. The main objective of this study is to investigate the influence of glucose seepage-degradation on the permeability of clay through an indoor percolation test in combination with thermogravimetric measurement with glucose as a representative domestic contaminant soluble sugar. We can conclude that the permeability of clay was significantly impacted by the seepage-degradation of soluble sugar. With a focus on the role of soluble sugars in domestic source pollutants on clay, the formation and evolution of the domestic source contaminated soil site went through three main stages: "generation of domestic source contaminated liquid & formation of S-C zone", "contraction of S-C zone & formation of E-C zone and C zone", and "disappearance of S-C zone & contraction of E-C zone and C zone". The clay permeability decreased, the migration range shrinked, and the pollution level of the clay near the source of the contaminants increased with increasing soluble sugar solution concentration.


Asunto(s)
Contaminación Ambiental , Contaminantes del Suelo , Arcilla , Suelo , Glucosa , Azúcares , Contaminantes del Suelo/análisis
6.
ACS Omega ; 7(49): 44689-44697, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36530324

RESUMEN

Shale rocks have been widely investigated to evaluate the productivity of oil/gas. The high temperature generated by the explosive fracturing to stimulate the gas reservoir has a significant impact on the chemical-mechanical properties of shale rocks. Pioneering works have been carried out at temperatures below 500 °C, but little has been done to quantify the correlation between the chemical and mechanical properties of shale at temperatures above 500 °C. Therefore, an experimental study on the effect of temperature on the chemical-mechanical properties of shale rocks is presented in this paper. The temperatures used in our experiments are between 0 and 800 °C. Results indicate that there exist strong chemical reactions leading to a big reduction in the sample's weight and mechanical strength for a temperature over 500 °C. Thermogravimetric analysis data demonstrates that the weight of shale powders has little change below 400 °C and largely decreases after 600 °C. It shows that the chemical reaction rate corresponding to shale compositions varies with temperature. X-ray diffraction and Fourier transform infrared are integrated to quantify the occurrence of contained reactions including the decomposition of kerogen, carbonates, and quartz transition. This can provide a temperature range for all possible reactions. Changes in the compositional information of shale samples have been proven to significantly influence the mechanical properties. A 25% decrease in dynamic Young's modulus emerges as the temperature approaches 700 °C. As the brittle minerals, for instance, carbonates, decrease with temperature, a brittle-ductile transition happens in shale. This work provides very meaningful results different from that at low temperatures to help people better understand the effects of high temperatures in many fields, such as explosive fracturing and radioactive waste disposal.

7.
ACS Omega ; 7(42): 37485-37498, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36312344

RESUMEN

Reservoir pressure relief is a practical method to enhance permeability for coalbed methane (CBM) extraction in tectonically deformed coal (TDC) reservoirs. To explore the coal permeability response to stress changes, the primary undeformed coal (PUC) and TDC from the same coal seam were sampled for the pore-fissure structure analysis, mechanical property test, and permeability experiments under different stress loading-unloading methods in this study. The experimental results demonstrated that the coal permeability is more sensitive to the changes in confining pressure (perpendicular to airflow) than axial stress (parallel to airflow). Coal permeability decreases negatively exponentially as the confining pressure increases, and its change process with increased axial pressure can be divided into five stages in this study. The pore structures and mechanical properties of coal samples affected their permeability response to stress changes. Under the stress loading condition, the coal matrix and fractures of PUC samples were compressed simultaneously, and the permeability was regulated by the pore-fissure structures in the coal matrix. Due to the deformation and displacement of coal particles, the permeability of the TDC sample is predominantly dependent on changes in intergranular pores. At the initial stress unloading stage, the fissure recovery and expansion lead to a rapid increase in permeability, but the permeability cannot rereach the original value when the stress is fully released. Furthermore, the influencing factors of coal permeability in response to stress loading-unloading also include confining pressure conditions and coal matrix adsorption swelling. Research on the permeability response characteristics of the stress loading-unloading process can provide some clarifications for the reservoir depressurization and permeability enhancement of CBM extraction in the TDC reservoir.

8.
An Acad Bras Cienc ; 93(1): e20190346, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33787750

RESUMEN

Based on the leakage of the coalbed methane (CBM) drilling engineering practice of Luan mining area in China, the author determines the safe drilling fluid density range for the stable borehole wall based on borehole wall collapse and fracture pressure. Such parameters as the drilling fluid hydraulic parameters (including pump pressure, pump power and displacement, nozzle diameter, bit pressure drop, bit hydraulic horsepower, circulation pressure drop, impact force and jet velocity) and drilling parameters (including weight-on-bit, drilling rotary speed, bit tooth wear) in each borehole section are optimized. Taking the lowest drilling cost as the controlling target, the drilling parameter optimization model is designed and solved by the genetic algorithm. Furthermore, a software named "CBM borehole wall stability parameter design and optimization" characterized by visualization and applicable for drilling formation condition, which can be used to design and optimize the borehole drilling technological parameters, is developed. This program includes such modules as drilling fluid density prediction, drilling technology design, database management, user management and help. The developed software is proven to solve the drilling leakage effectively in the No.67 borehole practice, which can help drilling engineers to optimize CBM drilling technological parameters safely and quickly.


Asunto(s)
Metano , Minería , China , Fenómenos Mecánicos , Programas Informáticos
9.
ACS Omega ; 4(7): 11685-11700, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31460275

RESUMEN

Accurate depiction of the adsorption capacity of supercritical CO2 (ScCO2) by existing adsorption models is an important focus for deep coal seams in CO2-enhanced coalbed methane (CO2-ECBM) recovery. To investigate the applicability of different adsorption models for the adsorption isotherms of ScCO2, the validities of 10 different adsorption models were analyzed, based on analyses of the adsorption characteristics of ScCO2 from deep coal seams of the Southern Qinshui Basin, China. These models include the Langmuir (L) model, two-parameter Langmuir (TL) model, Toth (T) model, Langmuir-Freundlich (LF) model, extended Langmuir (EL) model, double parameter Brunauer-Emmett Teller model, three-parameter BET (TBET) model, Dubinin-Radushkevich (D-R) model, Dubinin-Astakhov (D-A) model, and Ono-Kondo lattice (OK) model. These models were tested for both the excess and absolute adsorption capacities of ScCO2 under various temperatures and pressures. The simulation accuracy of the different adsorption models was analyzed. The optimal models for the adsorption of ScCO2 in deep coal seams were selected based on a comprehensive analysis of the simulation parameters, standard error, and residual sum of squares. There were obvious differences in the validity of the different adsorption models in terms of the excess adsorption capacity and absolute adsorption capacity of ScCO2. The D-A and D-R models are the optimal adsorption models for the adsorption isotherms of the excess adsorption of ScCO2 for the whole tested pressure range. The T, TL, and D-R models are the optimal adsorption models in simulation of the excess adsorption capacity of ScCO2 for the selected adsorption models when the equilibrium pressure is divided into two sections at the point of 8.13 MPa. In simulation of the absolute adsorption capacity of ScCO2, the TBET and LF models are the optimal adsorption models among the selected models when the equilibrium pressure is less than or equal to 8.13 MPa. The linear, exponential, logarithmic, power function, and polynomial adsorption simulation all have good precision in the simulation of the absolute adsorption capacity of ScCO2 when the pressure is beyond 8.13 MPa.

10.
C R Biol ; 337(5): 332-7, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24841960

RESUMEN

The spatial variation of soil pH and soil organic matter (SOM) in the urban area of Xuzhou, China, was investigated in this study. Conventional statistics, geostatistics, and a geographical information system (GIS) were used to produce spatial distribution maps and to provide information about land use types. A total of 172 soil samples were collected based on grid method in the study area. Soil pH ranged from 6.47 to 8.48, with an average of 7.62. SOM content was very variable, ranging from 3.51 g/kg to 17.12 g/kg, with an average of 8.26 g/kg. Soil pH followed a normal distribution, while SOM followed a log-normal distribution. The results of semi-variograms indicated that soil pH and SOM had strong (21%) and moderate (44%) spatial dependence, respectively. The variogram model was spherical for soil pH and exponential for SOM. The spatial distribution maps were achieved using kriging interpolation. The high pH and high SOM tended to occur in the mixed forest land cover areas such as those in the southwestern part of the urban area, while the low values were found in the eastern and the northern parts, probably due to the effect of industrial and human activities. In the central urban area, the soil pH was low, but the SOM content was high, which is mainly attributed to the disturbance of regional resident activities and urban transportation. Furthermore, anthropogenic organic particles are possible sources of organic matter after entering the soil ecosystem in urban areas. These maps provide useful information for urban planning and environmental management.


Asunto(s)
Conservación de los Recursos Naturales , Suelo/química , China , Ciudades , Ecosistema , Ambiente , Monitoreo del Ambiente , Restauración y Remediación Ambiental , Actividades Humanas , Concentración de Iones de Hidrógeno
11.
Environ Monit Assess ; 165(1-4): 349-63, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19466573

RESUMEN

Comparative leaching experiments were carried out using leaching medium with different pH to municipal solid waste in the landfill columns in order to investigate the mobility of heavy metals. The leachate pH and oxidation-reduction potential were measured by oxidation-reduction potential analyzer; the contents of heavy metals were measured by inductively coupled plasma mass spectrometry. It is very different in leaching concentrations of heavy metals; the dynamic leaching of heavy metals decreased with the rise of the leaching amount on the whole. Acid leaching medium had definite influence on the leaching of heavy metals in the early landfill, but it had the obvious inhibition effect on the leaching in the middle and late period of landfill; the neutral and alkaline leaching medium are more beneficial to the leaching of heavy metals. Due to the influence of the environment of landfill, the differences of the results in cumulative leaching amount, leaching rate, and leaching intensity of heavy metals are very big. The calculation results of the release rates of heavy metals prove that the orders of the release rates are not identical under different leaching conditions. Acid rain made heavy metals migrate from municipal solid waste to soil and detain in soil more easily; approached neutral and alkaline leaching mediums are more beneficial to leaching of heavy metals in the municipal solid waste and soil with leachate. The field verification of experimental data showed that the law of heavy metal leaching in municipal solid waste revealed by the experiment has a good consistency with the data obtained by municipal solid waste landfill.


Asunto(s)
Ciudades , Metales Pesados/análisis , Eliminación de Residuos , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis , China , Monitoreo del Ambiente/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...