Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Food Sci Technol ; 59(4): 1353-1361, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35250060

RESUMEN

Black soybean was fermented with four different potential Bacillus spp., including Bacillus licheniformis K1G, Bacillus subtilis K2B, Bacillus amyloliquefaciens K2G and Bacillus subtilis K2M, isolated from kinema, a traditionally fermented soybean product of Sikkim. Enhancement of antioxidant activity was observed with DPPH radical scavenging activity, reducing power potential and total antioxidant activity in methanolic as well as water extracts. Overall antioxidant activities were found to be higher in fermented black soybean in comparison to yellow soybean, showing its potential for production of kinema. Further, black soybean fermented using different starter was subjected to gastrointestinal digestion using pepsin and pancreatin. Upon gastrointestinal digestion of fermented black soybean changes in antioxidant activity was observed that was found to be reliant on the species and strains applied for fermentation as starter culture. Among different starters used for fermentation, black soybean fermented using B. subtilis K2M had higher DPPH radical scavenging and reducing power activity on gastrointestinal digestion. This study concludes that B. subtilis K2M can be applied for fermentation of black soybean for production of kinema as well as bioactive protein hydrolysates. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13197-021-05144-y.

2.
Front Mol Biosci ; 8: 636647, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33869283

RESUMEN

Fermented soybean products are traditionally consumed and popular in many Asian countries and the northeastern part of India. To search for potential agents for the interruption of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike glycoprotein 1 (S1) and human angiotensin-converting enzyme 2 (ACE2) receptor interactions, the in silico antiviral prospective of peptides identified from the proteome of kinema was investigated. Soybean was fermented using Bacillus licheniformis KN1G, Bacillus amyloliquefaciens KN2G and two different strains of Bacillus subtilis (KN2B and KN2M). The peptides were screened in silico for possible antiviral activity using two different web servers (AVPpred and meta-iAVP), and binding interactions of selected 44 peptides were further explored against the receptor-binding domain (RBD) of the S1 protein (PDB ID: 6M0J) by molecular docking using ZDOCK. The results showed that a peptide ALPEEVIQHTFNLKSQ (P13) belonging to B. licheniformis KN1G fermented kinema was able to make contacts with the binding motif of RBD by blocking specific residues designated as critical (GLN493, ASN501) in the binding of human angiotensin-converting enzyme 2 (ACE2) cell receptor. The selected peptide was also observed to have a significant affinity towards human toll like receptor 4 (TLR4)/Myeloid Differentiation factor 2 (MD2) (PDB ID: 3FXI) complex known for its essential role in cytokine storm. The energy properties of the docked complexes were analyzed through the Generalized Born model and Solvent Accessibility method (MM/GBSA) using HawkDock server. The results showed peptidyl amino acids GLU5, GLN8, PHE11, and LEU13 contributed most to P13-RBD binding. Similarly, ARG90, PHE121, LEU61, PHE126, and ILE94 were appeared to be significant in P13-TLR4/MD2 complex. The findings of the study suggest that the peptides from fermented soy prepared using B. licheniformis KN1G have better potential to be used as antiviral agents. The specific peptide ALPEEVIQHTFNLKSQ could be synthesized and used in combination with experimental studies to validate its effect on SARS-CoV-2-hACE2 interaction and modulation of TLR4 activity. Subsequently, the protein hydrolysate comprising these peptides could be used as prophylaxis against viral diseases, including COVID-19.

3.
Food Res Int ; 141: 110161, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33642021

RESUMEN

Kinema is an alkaline traditionally fermented soybean product popularly consumed in Sikkim Himalayan region. Kinema was prepared by soybean fermented with different species of Bacillus and analyzed for peptide content, antioxidant activity and consequence of gastrointestinal enzymes (pepsin and pancreatin) on the antioxidant effect. Antioxidant effect was enhanced during soybean fermentation using different starters, which further increased during gastrointestinal digestion. The peptides formed during soybean fermentation were analyzed using LC-MS/MS. Soybean fermented using different starters resulted in the production of some common peptides and a large number of unique peptides, which may affect the functional property of kinema. Peptides having antioxidative amino acids (histidine, phenylalanine, methionine, tryptophan and tyrosine) and significant GRAVY value were selected for their molecular interaction with myeloperoxidase (MPO), a key enzyme responsible for elevated oxidative stress. A peptide SEDDVFVIPAAYPF produced in kinema fermented using Bacillus licheniformis 1G had interaction with four out of five catalytic residues identified in MPO. Kinema prepared using specific starter can produce unique peptides responsible for specific health benefits.


Asunto(s)
Bacillus , Antioxidantes , Cromatografía Liquida , Simulación del Acoplamiento Molecular , Péptidos , Espectrometría de Masas en Tándem
4.
Bioresour Technol ; 235: 358-365, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28384588

RESUMEN

The aim of this study was the production of soybean bioactive hydrolysate using Bacillus spp. isolated from kinema. Totally 251 bacteria isolated from kinema samples, collected at different time period were screened for protease, ß-glucosidase and α-amylase activities and further identified by ARDRA based grouping followed by analysis of 16S rRNA gene sequence similarity. The results showed that Bacillus subtilis, Bacillus amyloliquefaciens and Bacillus licheniformis were the major Bacillus species. Twelve fermentative strains belonging to these groups and having high protease, α-amylase and ß-glucosidase activity were used for solid state fermentation. The best strains for soybean fermentation that result in production of protein hydrolysates rich in polyphenols that have higher bioactivity were B. subtilis KN12C, B. amyloliquefaciens KN2G and B. licheniformis KN13C. Potential isolates can be applied for the production of soybean hydrolysates and can also find application in production of value added products from by-products of soybean processing industries.


Asunto(s)
Bacillus/metabolismo , alfa-Amilasas/metabolismo , Fermentación , ARN Ribosómico 16S/genética , beta-Glucosidasa/metabolismo
5.
Crit Rev Food Sci Nutr ; 57(13): 2789-2800, 2017 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26463100

RESUMEN

Fermented milk is a potential source of various biologically active peptides with specific health benefits. Angiotensin converting enzyme inhibitory (ACE-I) peptides are one of the most studied bioactive peptides produced during milk fermentation. The presence of these peptides is reported in various fermented milk products such as, yoghurt, cheese, sour milk, etc., which are also available as commercial products. Many of the ACE-I peptides formed during milk fermentation are resistant to gastrointestinal digestion and inhibit angiotensin converting enzyme (ACE) in the rennin angiotension system (RAS). There are various factors, which affect the formation ACE-I peptides and their ability to reach the target tissue in active form, which includes type of starters (lactic acid bacteria (LAB), yeast, etc.), substrate composition (casein type, whey protein, etc.), composition of ACE-I peptide, pre and post-fermentation treatments, and its stability during gastrointestinal digestion. The antihypertensive effect of fermented milk products has also been proved by various in vitro and in vivo (animal and human trials) experiments. This paper reviews the literature on fermented milk products as a source of ACE-I peptides and various factors affecting the production and activity of ACE-I peptides.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Fermentación , Hipertensión/prevención & control , Leche/química , Leche/enzimología , Animales , Humanos , Peptidil-Dipeptidasa A/metabolismo
6.
Bioresour Technol ; 219: 239-245, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27494105

RESUMEN

The aim of this work was to study the production of bioactive protein hydrolysates using yeasts isolated from chhurpi. For this, a total of 125 proteolytic yeasts were isolated and molecular identification was carried out by analysis of the restriction digestion pattern generated by digesting the PCR amplified internal transcribed spacer region and 5.8S rRNA gene (ITS1-5.8S-ITS2) using three endonucleases (HaeIII, CfoI and HinfI). The results obtained showed that different proteolytic yeasts were dominant in marketed products (Kluyveromyces marxianus and Issatchenkia orientalis) and samples from production centers (Trichosporon asahii, Saccharomyces cerevisiae and Exophiala dermatitidis). Proteolytic strains in individual groups showed their ability to hydrolyze milk protein and enhance antioxidant property. Among the isolates, fermentation using K. marxianus YMP45 and S. cerevisiae YAM14 resulted in higher antioxidant activity. This is the first report on application of yeast isolated from fermented food of North-East India for the production of bioactive protein hydrolysate.


Asunto(s)
Queso/microbiología , Hidrolisados de Proteína/biosíntesis , Levaduras , Fermentación , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...