Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38031777

RESUMEN

BACKGROUND: Thrombosis is the key event that obstructs the flow of blood throughout the circulatory system, leading to stroke, myocardial infarction and severe cardiovascular complications. Currently, available antithrombotic drugs trigger several life-threatening side effects. INTRODUCTION: Antithrombotic agents from natural sources devoid of adverse effects are grabbing high attention. In our previous study, we reported the antioxidant, anticoagulant and antiplatelet properties of kenaf seed protein extract. Therefore, in the current study, purification and characterization of cysteine protease from kenaf seed protein extract responsible for potential antithrombotic activity was undertaken. METHODS: Purification of KSCP (Kenaf Seed Cysteine Protease) was carried out using gel permeation and ion exchange column chromatography. The purity of the enzyme was evaluated by SDS PAGE (Sodium Dodecyl-Sulfate Polyacrylamide Gel Electrophoresis). RP-HPLC (Reverse Phase High-Performance Liquid Chromatography), MALDI-TOF (Matrix-Assisted Laser Desorption Ionization Time-Of-Flight) and CD (Circular Dichroism techniques) were employed for its characterization. Proteolytic, fibrinolytic and kinetic study was done using spectroscopy. Plasma recalcification time, Prothrombin Time (PT), Thrombin clotting time (TCT), Activated Partial Thromboplastin Time (APTT), bleeding time and platelet aggregation studies were carried out for antithrombotic activity of KSCP. RESULT: A single sharp band of KSCP was observed under both reduced and non-reduced conditions, having a molecular mass of 24.1667kDa. KSCP was found to contain 30.3% helix turns and 69.7% random coils without a beta-pleated sheet. KSCP digested casein and fibrin, and its activity was inhibited by iodoacetic acid (IAA). KSCP was optimally active at pH 6.0 at the temperature of 40°C. KSCP exhibited anticoagulant properties by interfering in the intrinsic pathway of the blood coagulation cascade. Furthermore, KSCP dissolved both whole blood and plasma clots and platelet aggregation. CONCLUSION: KSCP purified from kenaf seed extract showed antithrombotic potential. Hence, it could be a better candidate for the management of thrombotic complications.

2.
Molecules ; 28(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446788

RESUMEN

Oxidative stress and chronic inflammation interplay with the pathogenesis of cancer. Breast cancer in women is the burning issue of this century, despite chemotherapy and magnetic therapy. The management of secondary complications triggered by post-chemotherapy poses a great challenge. Thus, identifying target-specific drugs with anticancer potential without secondary complications is a challenging task for the scientific community. It is possible that green technology has been employed in a greater way in order to fabricate nanoparticles by amalgamating plants with medicinal potential with metal oxide nanoparticles that impart high therapeutic properties with the least toxicity. Thus, the present study describes the synthesis of Titanium dioxide nanoparticles (TiO2 NPs) using aqueous Terenna asiatica fruit extract, with its antioxidant, anti-inflammatory and anticancer properties. The characterisation of TiO2 NPs was carried out using a powdered X-ray diffractometer (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray diffraction (EDX), high-resolution transmission electron microscopy (HR-TEM), dynamic light scattering (DLS), and zeta-potential. TiO2 NPs showed their antioxidant property by scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals in a dose-dependent manner with an IC50 value of 80.21 µg/µL. To ascertain the observed antioxidant potential of TiO2 NPs, red blood cells (RBC) were used as an in vitro model system. Interestingly, TiO2 NPs significantly ameliorated all the stress parameters, such as lipid peroxidation (LPO), protein carbonyl content (PCC), total thiol (TT), superoxide dismutase (SOD), and catalase (CAT) in sodium nitrite (NaNO2)-induced oxidative stress, in RBC. Furthermore, TiO2 NPs inhibited RBC membrane lysis and the denaturation of both egg and bovine serum albumin, significantly in a dose-dependent manner, suggesting its anti-inflammatory property. Interestingly, TiO2 NPs were found to kill the MCF-7 cells as a significant decrease in cell viability of the MCF-7 cell lines was observed. The percentage of growth inhibition of the MCF-7 cells was compared to that of untreated cells at various doses (12.5, 25, 50, 100, and 200 µg/mL). The IC50 value of TiO2 NPs was found to be (120 µg/mL). Furthermore, the Annexin V/PI staining test was carried out to confirm apoptosis. The assay indicated apoptosis in cancer cells after 24 h of exposure to TiO2 NPs (120 µg/mL). The untreated cells showed no significant apoptosis in comparison with the standard drug doxorubicin. In conclusion, TiO2 NPs potentially ameliorate NaNO2-induced oxidative stress in RBC, inflammation and MCF-7 cells proliferation.


Asunto(s)
Neoplasias de la Mama , Nanopartículas del Metal , Humanos , Femenino , Antioxidantes/farmacología , Antioxidantes/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Carbonilación Proteica , Estrés Oxidativo , Nanopartículas del Metal/química , Inflamación , Proliferación Celular
3.
J Am Nutr Assoc ; 42(3): 211-223, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36484782

RESUMEN

High level of exogenous ROS in the circulation affects RBC membrane integrity which facilitates the generation of endogenous RBC ROS, implicated in series of physiological changes primarily associated with thrombosis and vital tissue damage. Although, Pennisetum glaucum (pearl millet) stores abundance of proteins, their therapeutic potential is least explored. Thus, the purpose of this study is to examine the role of Pennisetum Glaucum Protein Extract (PGE) on oxidative stress induced cell/tissue damage and thrombosis.In this investigation, protein characterization was done by using SDS-PAGE, Native-PAGE, PAS-staining and HPLC. In-vitro oxidative stress was induced in RBC using sodium nitrite. While, in-vivo oxidative stress was induced in experimental rats using diclofenac. Stress markers and biochemical parameters were evaluated. Role of PGE on thrombosis was assessed by using, in-vitro plasma recalcification time, activated partial thromboplastin time, prothrombin time, mouse tail bleeding time (In-vivo) and platelet aggregation.PGE revealed varied range of molecular weight proteins on SDS-PAGE. PGE normalized the sodium nitrite induced oxidative damage of RBC and diclofenac induced oxidative damage in liver, kidney and small intestine. PGE exhibited anticoagulant effect by increasing the coagulation time of both PRP and PPP and mouse tail bleeding time. Furthermore, PGE prolonged the clotting time of only APTT but did not affect PT. PGE inhibited agonists ADP and epinephrine induced platelet aggregation.Our findings suggest, PGE could be a better contender in the management of oxidative stress and its associated diseases. ABBREVIATIONS: PGEPennisetum Glaucum protein ExtractAPPTActivated Partial Thromboplastin TimePTProthrombin TimeROSReactive Oxygen SpeciesPRPPlatelet Rich PlasmaPPPPlatelet Poor PlasmaSDS-PAGESodium Dodecyl Sulfate-Polyacrylamide Gel ElectrophoresisPASPeriodic Acid-schiff StainingODOptical DensityINRInternational Normalized RatioPBSPhosphate Buffered SalineSODSuperoxide DismutaseTCATrichloro Acetatic AcidDTNBDi-Thio-bis-NitroBenzoic acidSGOTSerum Glutamate Oxaloacetate TransaminaseSGPTSerum Glutamate Pyruvate TransaminaseALPAlkaline PhosphataseDFCDiclofenacSylSilymarinMEDMinimum Edema DoseMHDMinimum Hemorrhagic Dose.


Asunto(s)
Pennisetum , Trombosis , Ratas , Ratones , Animales , Anticoagulantes/farmacología , Pennisetum/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Diclofenaco/metabolismo , Nitrito de Sodio/metabolismo , Estrés Oxidativo , Trombosis/tratamiento farmacológico , Hígado/metabolismo , Riñón/metabolismo , Intestino Delgado/metabolismo
4.
Appl Biochem Biotechnol ; 195(2): 772-800, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36173546

RESUMEN

Oxidative stress has been implicated in deadly lifestyle diseases, and antioxidants from plant sources are the primary option in the treatment regime. Kenaf seeds are the storehouse of potential natural antioxidant phytoconstituents. Perhaps, none of the studies documented the phytoconstituents and their antioxidant potential from Kenaf seed coat so far. Thus, the current study focuses on exploring the protective effect of Kenaf Seed Coat Ethanol Extract (KSCEE) against sodium nitrite and diclofenac-induced oxidative stress in vitro (red blood cell and platelets model) and in vivo (female Sprague Dawely rat's model) along with the antithrombotic activity. The infrared spectrophotometry data showed the heterogeneous functional groups (CH, OH, C = C, C = C-C) and aromatic rings. Reverse phase high-performance liquid chromatography and gas chromatography-mass spectrometry chromatogram of KSCEE also evidenced the presence of several phytochemicals. KSCEE displayed about 76% of DPPH scavenging activity with an IC50 value of 34.94 µg/ml. KSCEE significantly (***p < 0.001) normalized the stress markers such as lipid peroxidation, protein carbonyl content, superoxide dismutase, and catalase in sodium nitrite and diclofenac-induced oxidative stress in RBC, platelets, liver, kidney, and small intestine, respectively. Furthermore, KSCEE was found to protect the diclofenac-induced tissue destruction of the liver, kidney, and small intestine obtained from seven groups of female Sprague Dawely rats. KSCEE delayed the clotting time of platelet-rich plasma and platelet-poor plasma and activated partial thromboplastin time, suggesting its anticoagulant property. In addition, KSCEE also exhibited antiplatelet activity by inhibiting both adenosine diphosphate and epinephrine-induced platelet aggregation. In conclusion, KSCEE ameliorates the sodium nitrite and diclofenac-induced oxidative stress in red blood cells, platelets, and experimental animals along with antithrombotic properties.


Asunto(s)
Antioxidantes , Hibiscus , Ratas , Animales , Antioxidantes/química , Ratas Sprague-Dawley , Hibiscus/química , Hibiscus/metabolismo , Fibrinolíticos/farmacología , Etanol/metabolismo , Diclofenaco/farmacología , Diclofenaco/metabolismo , Nitrito de Sodio , Carbonilación Proteica , Estrés Oxidativo , Extractos Vegetales/química , Semillas/química
5.
Molecules ; 27(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36014400

RESUMEN

The present study describes the green biofunctional synthesis of magnesium oxide (MgO) nanoparticles using the aqueous Tarenna asiatica fruit extract. The characterization of Tarenna asiatica fruit extract MgO nanoparticles (TAFEMgO NPs) was achieved by X-ray powder diffraction, UV-Vis spectroscopy, FTIR, TEM, SEM, and energy-dispersive X-ray diffraction. TAFEMgO NPs scavenged the DPPH free radicals with an IC50 value of 55.95 µg/µL, and it was highly significant compared to the standard. To authenticate the observed antioxidant potential of TAFEMgO NPs, oxidative stress was induced in red blood cells (RBC) using sodium nitrite (NaNO2). Interestingly, TAFEMgO NPs ameliorated the RBC damage from oxidative stress by significantly restoring the stress parameters, such as the protein carbonyl content (PCC), lipid peroxidation (LPO), total thiol (TT), super-oxide dismutase (SOD), and catalase (CAT). Furthermore, oxidative stress was induced in-vivo in Sprague Dawley female rats using diclofenac (DFC). TAFEMgO NPs normalized the stress parameters in-vivo and minimized the oxidative damage in tissues. Most importantly, TAFEMgO NPs restored the function and architecture of the damaged livers, kidneys, and small intestines by regulating biochemical parameters. TAFEMgO NPs exhibited an anticoagulant effect by increasing the clotting time from 193 s in the control to 885 s in the platelet rich plasma. TAFEMgO NPs prolonged the formation of the clot process in the activated partial thromboplastin time and the prothrombin time, suggest the effective involvement in both intrinsic and extrinsic clotting pathways of the blood coagulation cascade. TAFEMgO NPs inhibited adenosine di-phosphate (ADP)-induced platelet aggregation. TAFEMgO NPs did not show hemolytic, hemorrhagic, and edema-inducing properties at the tested concentration of 100 mg/kgbody weight, suggesting its non-toxic property. In conclusion, TAFEMgO NPs mitigates the sodium nitrite (NaNO2)- and diclofenac (DFC)-induced stress due to oxidative damage in both in vitro and in vivo experimental models.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Trombosis , Animales , Diclofenaco/farmacología , Femenino , Óxido de Magnesio/química , Óxido de Magnesio/farmacología , Nanopartículas del Metal/química , Nanopartículas/química , Estrés Oxidativo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Carbonilación Proteica , Ratas , Ratas Sprague-Dawley , Nitrito de Sodio/farmacología
6.
Folia Med (Plovdiv) ; 63(6): 884-894, 2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35851225

RESUMEN

INTRODUCTION: Oxidative stress plays a critical role in the progression of diabetes, arthritis, cancer, eryptosis, cardiovascular disease, and thrombosis. Currently, antioxidants from natural sources are in high demand due to their beneficial role in the management of said diseases. AIM: The purpose of the study was to evaluate the protective effect of sorghum protein buffer extract (SBE) on sodium nitrite-induced oxidative stress and thrombosis. MATERIALS AND METHODS: Protein characterization of SBE was done using SDS-PAGE. Oxidative stress in RBC was induced using sodium nitrite (NaNO2) and the key stress markers such as lipid peroxidation (LPO), protein carbonyl content (PCC), and the level of antioxidant enzymes (SOD and CAT) were measured. The anticoagulant effect of SBE was identified by employing in-vitro plasma recalcification time, activated partial thromboplastin time (APTT), prothrombin time (PT), and in-vivo mouse tail bleeding time. SBE antiplatelet activity was examined using agonist adenosine diphosphate (ADP) and epinephrine-induced platelet aggregation. Non-toxic property of SBE was identified using in-vitro direct haemolytic, haemorrhagic, and edema forming activities using experimental mice. RESULTS: SBE revealed similar protein banding pattern under both reduced and non-reduced conditions on SDS-PAGE. Interestingly, SBE normalized the level of LPO, PCC, SOD, and CAT in stress-inducedRBCs. Furthermore, SBE showed anticoagulant effect in platelet rich plasma by enhancing the clotting time from the control 250 s to 610 s and bleeding time from the control 200 s to more than 500 s (p<0.01) in a dose dependent manner. In addition, SBE prolonged the clot formation process of only APTT but not PT. SBE inhibited the agonists ADP and epinephrine induced platelet aggregation. SBE did not hydrolyze RBC cells, devoid of edema and haemorrhage properties. CONCLUSIONS: This study demonstrates for the first time the anticoagulant, antiplatelet, and antioxidant properties of SBE. Thus, the observed results validate consumption of sorghum as good for health and well-being.


Asunto(s)
Sorghum , Trombosis , Adenosina Difosfato/farmacología , Animales , Anticoagulantes/farmacología , Antioxidantes/farmacología , Coagulación Sanguínea , Epinefrina , Hemorragia , Ratones , Estrés Oxidativo , Inhibidores de Agregación Plaquetaria/farmacología , Carbonilación Proteica , Nitrito de Sodio/farmacología , Superóxido Dismutasa
7.
Int J Biol Macromol ; 163: 317-326, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32629053

RESUMEN

The current study deals with the purification and characterization of non-enzymatic glycoprotein (NEGp) from flax seed buffer extract. Sephadex G-100 and DEAE-A25 column chromatography techniques were employed to isolate NEGp. NEGp showed single sharp band at 29 kDa region on 10% SDS-PAGE, and under reduced and non-reduced conditions revealed its monomeric nature. Besides, NEGp taken up the PAS stain at 29 kDa region reveals the presence of carbohydrate moiety. Purity of NEGp was adjudged by RP-HPLC, as it revealed a single sharp peak at the retention time of 3.4 min. The exact molecular mass of NEGp was found to be 26 kDa which was confirmed by MALDI-TOF. Circular di-chromism spectra of NEGp showed 12.0% α-helix, 24.3% α-helix turn and 63.7% random coils without beta pleated sheets. NEGp was found to exhibit anticoagulant activity by extending clotting time of both platelet rich plasma and platelet poor plasma from control 240 s to 1800 s and 280 s to 2100 s respectively at the concentration of 8 µg. NEGp inhibited the agonists such as ADP, epinephrine and arachidonic acid induced platelet aggregation in washed platelets. The percentage of inhibition was found to be 70%, 80% and 60% respectively. While, it did not interfere in thrombin, PAF and collagen induced platelet aggregation. NEGp did not hydrolyse RBC membrane, devoid of haemorrhagic and edema inducing properties in experimental mice.


Asunto(s)
Anticoagulantes/aislamiento & purificación , Anticoagulantes/farmacología , Lino/química , Glicoproteínas/aislamiento & purificación , Glicoproteínas/farmacología , Inhibidores de Agregación Plaquetaria/aislamiento & purificación , Inhibidores de Agregación Plaquetaria/farmacología , Semillas/química , Anticoagulantes/química , Coagulación Sanguínea/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Dicroismo Circular , Glicoproteínas/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Inhibidores de Agregación Plaquetaria/química , Proteolisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
8.
Blood Coagul Fibrinolysis ; 31(5): 293-302, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32332278

RESUMEN

: To understand the RBC protecting efficiency and antiplatelet activity of methanolic extract of Caesalpinia crista coat (MECCC). RBC-protecting activity of MECCC was evaluated using assays, such as DPPH, level of lipid peroxidation, protein carbonyl content, superoxide dismutase and catalase as a marker of oxidative stress whereas, platelet aggregation inhibition was performed using human platelet-rich plasma (PRP). MECCC showed about 76% of DPPH-scavenging activity, with an IC50 value of 71.89 µg/ml. The MECCC reduced the level of lipid peroxidation and protein carboxylation in RBC caused by NaNO2 in a dose-dependent manner. In addition, MECCC normalized the levels of superoxide dismutase (SOD) and catalase (CAT) in oxidative stress-induced RBC in a dose-dependent manner. This suggested the protective effect of MECCC on RBC against oxidative stress. Furthermore, MECCC also exhibited mild antiplatelet activity by inhibiting both ADP and epinephrine agonists that induced platelet aggregation. The noticed inhibition percentage was found to be 28 and 23%, respectively at the concentration of 150 µg. Interestingly, MECCC did not hydrolyse the RBC suggesting its nontoxic properties. MECCC possesses protective effect of RBC against NaNO2 (10 mmol/l) induce oxidative stress and inhibits platelet aggregation.


Asunto(s)
Antioxidantes/farmacología , Caesalpinia/química , Eritrocitos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Antioxidantes/química , Eritrocitos/metabolismo , Humanos , Peroxidación de Lípido/efectos de los fármacos , Extractos Vegetales/química , Agregación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/química , Nitrito de Sodio/efectos adversos
9.
Biochemistry (Mosc) ; 85(1): 119-129, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32079523

RESUMEN

Suicidal erythrocyte death, or eryptosis, is the key event in eliciting anemia in numerous pathological conditions, including diabetes, chronic kidney disease, cancer, sepsis, etc. Oxidative stress is an important trigger in the acceleration of erythrocyte loss via eryptosis and an underlying mechanism of anemia emergence in the above pathologies. Therefore, there is an increasing demand for identification of antioxidants and anti-eryptotic agents for the management of stress-related ailments. Here, we demonstrated the antioxidant and anti-eryptotic properties of the tamarind seed coat ethanol extract (TSCEE) against 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress and eryptosis. The presence of probable secondary metabolites in the TSCEE extract was investigated by RP-HPLC. Active groups present in the TSCEE were studied by the Fourier-transform infrared spectroscopy. Cyclic voltammetric studies confirmed the antioxidant potential of TSCEE. The protective effect of TSCEE on red blood cells was confirmed by assessing various eryptotic markers, such as reactive oxygen species generation, intracellular calcium levels, and phosphatidylserine exposure. TSCEE reduced lipid peroxidation and protein carbonyl content and restored the levels of glutathione, antioxidant enzymes, and enzymes involved in glutathione replenishment. In conclusion, TSCEE was found to exhibit multiple therapeutic properties, which makes it a promising agent for treating oxidative stress-induced eryptosis and subsequent anemia in various pathologies.


Asunto(s)
Antioxidantes/farmacología , Eriptosis/efectos de los fármacos , Eritrocitos , Extractos Vegetales/farmacología , Tamarindus/metabolismo , Biomarcadores/metabolismo , Calcio/metabolismo , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Glutatión/metabolismo , Humanos , Peroxidación de Lípido , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Semillas/metabolismo
10.
ACS Omega ; 3(10): 12562-12574, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30411010

RESUMEN

The current study evaluates antidiabetic, anticoagulant, and antiplatelet activity of novel benzimidazole-containing quinolinyl oxadiazoles. These derivatives are synthesized and characterized using spectroscopy (FT-IR, 1H NMR, and mass spectroscopy) and single-crystal X-ray diffraction methods. The inhibitory effects of these compounds were evaluated by the α-glucosidase inhibitory assay and shows the activity in the range of IC50 = 0.66 ± 0.05 to 3.79 ± 0.46 µg/mL. In addition, molecular docking studies revealed that benzimidazole-containing quinolinyl oxadiazoles can correctly dock into the target receptor protein of the human intestinal α-glucosidase, while their bioavailability/drug-likeness was predicted to be acceptable but requires further optimization. On the other hand, compound 8a and 8d showed anticoagulant activity as they enhanced the clotting time from control 180-410 and 180-390 s, respectively, in platelet rich plasma and 230-460 and 230-545 s in platelet poor plasma. Furthermore, only 8a showed antiplatelet activity by inhibiting epinephrine-induced platelet aggregation, and the observed aggregation inhibition was found to be 93.4%. Compounds 8a-f show nontoxic properties because of the non-hydrolyzing properties in the RBC cells. In addition, 8a and 8d show anti-edema and anti-hemorrhagic properties in the experimental mice. These findings reveal that benzimidazole-containing quinolinyl oxadiazoles act as α-glucosidase inhibitors to develop novel therapeutics for treating type-II diabetes mellitus and can act as lead molecules in drug discovery as potential antidiabetic and antithrombotic agents.

11.
PLoS One ; 10(2): e0115284, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25658937

RESUMEN

Thrombosis, like other cardiovascular diseases, has a strong genetic component, with largely unknown determinants. EMILIN2, Elastin Microfibril Interface Located Protein2, was identified as a candidate gene for thrombosis in mouse and human quantitative trait loci studies. EMILIN2 is expressed during cardiovascular development, on cardiac stem cells, and in heart tissue in animal models of heart disease. In humans, the EMILIN2 gene is located on the short arm of Chromosome 18, and patients with partial and complete deletion of this chromosome region have cardiac malformations. To understand the basis for the thrombotic risk associated with EMILIN2, EMILIN2 deficient mice were generated. The findings of this study indicate that EMILIN2 influences platelet aggregation induced by adenosine diphosphate, collagen, and thrombin with both EMILIN2-deficient platelets and EMILIN2-deficient plasma contributing to the impaired aggregation response. Purified EMILIN2 added to platelets accelerated platelet aggregation and reduced clotting time when added to EMILIN2-deficient mouse and human plasma. Carotid occlusion time was 2-fold longer in mice with platelet-specific EMILIN2 deficiency, but stability of the clot was reduced in mice with both global EMILIN2 deficiency and with platelet-specific EMILIN2 deficiency. In vitro clot retraction was markedly decreased in EMILIN2 deficient mice, indicating that platelet outside-in signaling was dependent on EMILIN2. EMILIN1 deficient mice and EMILIN2:EMILIN1 double deficient mice had suppressed platelet aggregation and delayed clot retraction similar to EMILIN2 mice, but EMILIN2 and EMILIN1 had opposing affects on clot retraction, suggesting that EMILIN1 may attenuate the effects of EMILIN2 on platelet aggregation and thrombosis. In conclusion, these studies identify multiple influences of EMILIN2 in pathophysiology and suggest that its role as a prothrombotic risk factor may arise from its effects on platelet aggregation and platelet mediated clot retraction.


Asunto(s)
Coagulación Sanguínea , Plaquetas/metabolismo , Glicoproteínas/metabolismo , Agregación Plaquetaria , Transducción de Señal/fisiología , Trombosis/metabolismo , Animales , Plaquetas/patología , Glicoproteínas/genética , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Trombosis/genética , Trombosis/patología
12.
Blood Coagul Fibrinolysis ; 26(2): 191-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25192240

RESUMEN

The current study explores the anticoagulant and fibrin clot-hydrolyzing properties of Momordica charantia seed extract (MCSE). MCSE hydrolyzed casein with the specific activity of 0.780 units/mg per min. Interestingly, it enhanced the clot formation process of citrated human plasma from control 146 to 432 s. In addition, the intravenous injection of MCSE significantly prolonged the bleeding time in a dose-dependent manner from control 150 to more than 800 s, and strengthened its anticoagulant activity. Interestingly, MCSE specifically prolonged the clotting time of only activated partial thromboplastin time, but not prothrombin time, and revealed the participation of MCSE in the intrinsic pathway of the blood coagulation cascade. Furthermore, MCSE completely hydrolyzed both Aα and Bß chains of the human fibrinogen and partially hydrolyzed the γ chain. However, it hydrolyzed all the chains (α polymer, α chain, ß chain and γ-γ dimmers) of partially cross-linked human fibrin clot. The proteolytic activity followed by the anticoagulant effect of the MCSE was completely abolished by the 1,10-phenanthroline and phenyl methyl sulphonyl fluoride, but iodoacetic acid, EDTA, and ethylene glycol-N,N,N',N'-tetra acetic acid did not. Curiously, MCSE did not hydrolyze any other plasma proteins except the plasma fibrinogen. Moreover, MCSE was devoid of RBC lysis, edema and hemorrhagic properties, suggesting its nontoxic nature. Taken together, MCSE may be a valuable candidate in the treatment of blood clot/thrombotic disorders.


Asunto(s)
Anticoagulantes/aislamiento & purificación , Anticoagulantes/farmacología , Momordica charantia/química , Extractos Vegetales/farmacología , Trombosis/tratamiento farmacológico , Animales , Fibrina/metabolismo , Humanos , Ratones , Extractos Vegetales/aislamiento & purificación , Semillas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...