Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(52): e2306160120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38109545

RESUMEN

Epulopiscium spp. are the largest known heterotrophic bacteria; a large cigar-shaped individual is a million times the volume of Escherichia coli. To better understand the metabolic potential and relationship of Epulopiscium sp. type B with its host Naso tonganus, we generated a high-quality draft genome from a population of cells taken from a single fish. We propose the name Candidatus Epulopiscium viviparus to describe populations of this best-characterized Epulopiscium species. Metabolic reconstruction reveals more than 5% of the genome codes for carbohydrate active enzymes, which likely degrade recalcitrant host-diet algal polysaccharides into substrates that may be fermented to acetate, the most abundant short-chain fatty acid in the intestinal tract. Moreover, transcriptome analyses and the concentration of sodium ions in the host intestinal tract suggest that the use of a sodium motive force (SMF) to drive ATP synthesis and flagellar rotation is integral to symbiont metabolism and cellular biology. In natural populations, genes encoding both F-type and V-type ATPases and SMF generation via oxaloacetate decarboxylation are among the most highly expressed, suggesting that ATPases synthesize ATP and balance ion concentrations across the cell membrane. High expression of these and other integral membrane proteins may allow for the growth of its extensive intracellular membrane system. Further, complementary metabolism between microbe and host is implied with the potential provision of nitrogen and B vitamins to reinforce this nutritional symbiosis. The few features shared by all bacterial behemoths include extreme polyploidy, polyphosphate synthesis, and thus far, they have all resisted cultivation in the lab.


Asunto(s)
Sodio , ATPasas de Translocación de Protón Vacuolares , Animales , Sodio/metabolismo , Bacterias/metabolismo , Clostridiales/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Adenosina Trifosfato/metabolismo
2.
Appl Environ Microbiol ; 89(10): e0016523, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37800920

RESUMEN

Gut microbiota are fundamentally important for healthy function in animal hosts. Drosophila melanogaster is a powerful system for understanding host-microbiota interactions, with modulation of the microbiota inducing phenotypic changes that are conserved across animal taxa. Qualitative differences in diet, such as preservatives and dietary yeast batch variation, may affect fly health indirectly via microbiota, and may potentially have hitherto uncharacterized effects directly on the fly. These factors are rarely considered, controlled, and are not standardized among laboratories. Here, we show that the microbiota's impact on fly triacylglyceride (TAG) levels-a commonly-measured metabolic index-depends on both preservatives and yeast, and combinatorial interactions among the three variables. In studies of conventional, axenic, and gnotobiotic flies, we found that microbial impacts were apparent only on specific yeast-by-preservative conditions, with TAG levels determined by a tripartite interaction of the three experimental factors. When comparing axenic and conventional flies, we found that preservatives caused more variance in host TAG than microbiota status, and certain yeast-preservative combinations even reversed effects of microbiota on TAG. Preservatives had major effects in axenic flies, suggesting either direct effects on the fly or indirect effects via media. However, Acetobacter pomorum buffers the fly against this effect, despite the preservatives inhibiting growth, indicating that this bacterium benefits the host in the face of mutual environmental toxicity. Our results suggest that antimicrobial preservatives have major impacts on host TAG, and that microbiota modulates host TAG dependent on the combination of the dietary factors of preservative formula and yeast batch. IMPORTANCE Drosophila melanogaster is a premier model for microbiome science, which has greatly enhanced our understanding of the basic biology of host-microbe interactions. However, often overlooked factors such as dietary composition, including yeast batch variability and preservative formula, may confound data interpretation of experiments within the same lab and lead to different findings when comparing between labs. Our study supports this notion; we find that the microbiota does not alter host TAG levels independently. Rather, TAG is modulated by combinatorial effects of microbiota, yeast batch, and preservative formula. Specific preservatives increase TAG even in germ-free flies, showing that a commonplace procedure in fly husbandry alters metabolic physiology. This work serves as a cautionary tale that fly rearing methodology can mask or drive microbiota-dependent metabolic changes and also cause microbiota-independent changes.


Asunto(s)
Acetobacter , Microbioma Gastrointestinal , Animales , Drosophila , Microbioma Gastrointestinal/fisiología , Drosophila melanogaster/microbiología , Acetobacter/metabolismo , Dieta
3.
Talanta ; 205: 120168, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31450459

RESUMEN

Deficiencies in thiamine (vitamin B1) cause a host of neurological and reproductive impairments yielding morbidity and mortality across environmental and clinical realms. In a technique analogous to immunomagnetic separation, we introduce the use of thiamine periplasmic binding protein (TBP)-conjugated magnetic beads to isolate thiamine from complex matrices. TBP expressed in Escherichia coli is highly specific to thiamine and provides an alternative to antibodies for this non-immunogenic target. After incubation with the sample and removal of unbound matrix constituents, thiamine is simultaneously released and converted to its fluorescent oxidation product thiochrome by alkaline potassium ferricyanide. Subsequent measurement of fluorescence at thiochrome-specific wavelengths provides a second layer of specificity for the detection of thiamine. Thiamine could be quantified at concentrations as low as 5 nM ranging up to 240 nM. Within, we apply this technique to selectively capture and quantify thiamine in complex salmonid fish egg and tissue matrices. Our results showed no measurable non-specific binding to the beads by endogenous fluorophores in the fish egg matrix. Thiamine levels as low as 0.2 nmol/g of fish egg can be detected using this approach, which is sufficient to assess deficiencies causing morbidity and mortality in fish that occur at 1.0 nmol/g of egg. This practical method may find application in other resource limited settings for clinical, food, or dietary supplement analyses.


Asunto(s)
Técnicas Biosensibles/métodos , Imanes/química , Proteínas de Unión Periplasmáticas/química , Tiamina/análisis , Tiamina/aislamiento & purificación , Transferasas Alquil y Aril/metabolismo , Animales , Huevos/análisis , Límite de Detección , Microesferas , Salmón , Tiamina/metabolismo
4.
Appl Environ Microbiol ; 84(18)2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30006396

RESUMEN

Thiamine is essential to life, as it serves as a cofactor for enzymes involved in critical carbon transformations. Many bacteria can synthesize thiamine, while thiamine auxotrophs must obtain it or its precursors from the environment. Thiaminases degrade thiamine by catalyzing the base-exchange substitution of thiazole with a nucleophile, and thiaminase I specifically has been implicated in thiamine deficiency syndromes in animals. The biological role of this secreted enzyme has been a long-standing mystery. We used the thiaminase I-producing soil bacterium Burkholderia thailandensis as a model to ascertain its function. First, we generated thiamine auxotrophs, which are still able to use exogenous precursors (thiazole and hydroxymethyl pyrimidine), to synthesize thiamine. We found that thiaminase I extended the survival of these strains, when grown in defined media where thiamine was serially diluted out, compared to isogenic strains that could not produce thiaminase I. Thiamine auxotrophs grew better on thiamine precursors than thiamine itself, suggesting thiaminase I functions to convert thiamine to useful precursors. Furthermore, our findings demonstrate that thiaminase I cleaves phosphorylated thiamine and toxic analogs, which releases precursors that can then be used for thiamine synthesis. This study establishes a biological role for this perplexing enzyme and provides additional insight into the complicated nature of thiamine metabolism and how individual bacteria may manipulate the availability of a vital nutrient in the environment.IMPORTANCE The function of thiaminase I has remained a long-standing, unsolved mystery. The enzyme is only known to be produced by a small subset of microorganisms, although thiaminase I activity has been associated with numerous plants and animals, and is implicated in thiamine deficiencies brought on by consumption of organisms containing this enzyme. Genomic and biochemical analyses have shed light on potential roles for the enzyme. Using the genetically amenable thiaminase I-producing soil bacterium Burkholderia thailandensis, we were able to demonstrate that thiaminase I helps salvage precursors from thiamine derivatives in the environment and degrades thiamine to its precursors, which are preferentially used by B. thailandensis auxotrophs. Our study establishes a biological role for this perplexing enzyme and provides insight into the complicated nature of thiamine metabolism. It also establishes B. thailandensis as a robust model system for studying thiamine metabolism.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Proteínas Bacterianas/metabolismo , Burkholderia/enzimología , Burkholderia/crecimiento & desarrollo , Tiamina/metabolismo , Transferasas Alquil y Aril/genética , Proteínas Bacterianas/genética , Burkholderia/genética , Burkholderia/metabolismo , Pirimidinas/metabolismo , Tiamina/química , Tiazoles/metabolismo
5.
mBio ; 9(2)2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29511074

RESUMEN

The microbiota of Drosophila melanogaster has a substantial impact on host physiology and nutrition. Some effects may involve vitamin provisioning, but the relationships between microbe-derived vitamins, diet, and host health remain to be established systematically. We explored the contribution of microbiota in supplying sufficient dietary thiamine (vitamin B1) to support D. melanogaster at different stages of its life cycle. Using chemically defined diets with different levels of available thiamine, we found that the interaction of thiamine concentration and microbiota did not affect the longevity of adult D. melanogaster Likewise, this interplay did not have an impact on egg production. However, we determined that thiamine availability has a large impact on offspring development, as axenic offspring were unable to develop on a thiamine-free diet. Offspring survived on the diet only when the microbiota was present or added back, demonstrating that the microbiota was able to provide enough thiamine to support host development. Through gnotobiotic studies, we determined that Acetobacter pomorum, a common member of the microbiota, was able to rescue development of larvae raised on the no-thiamine diet. Further, it was the only microbiota member that produced measurable amounts of thiamine when grown on the thiamine-free fly medium. Its close relative Acetobacter pasteurianus also rescued larvae; however, a thiamine auxotrophic mutant strain was unable to support larval growth and development. The results demonstrate that the D. melanogaster microbiota functions to provision thiamine to its host in a low-thiamine environment.IMPORTANCE There has been a long-standing assumption that the microbiota of animals provides their hosts with essential B vitamins; however, there is not a wealth of empirical evidence supporting this idea, especially for vitamin B1 (thiamine). To determine whether this assumption is true, we used Drosophila melanogaster and chemically defined diets with different thiamine concentrations as a model. We found that the microbiota does provide thiamine to its host, enough to allow the development of flies on a thiamine-free diet. The power of the Drosophila-microbiota system allowed us to determine that one microbiota member in particular, Acetobacter pomorum, is responsible for the thiamine provisioning. Thereby, our study verifies this long-standing hypothesis. Finally, the methods used in this work are applicable for interrogating the underpinnings of other aspects of the tripartite interaction between diet, host, and microbiota.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Tiamina/farmacología , Acetobacter/efectos de los fármacos , Animales , Drosophila melanogaster , Larva/microbiología
6.
Mol Microbiol ; 107(1): 68-80, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29024073

RESUMEN

Few studies have described chromosomal dynamics in bacterial cells with more than two complete chromosome copies or described changes with respect to development in polyploid cells. We examined the arrangement of chromosomal loci in the very large, highly polyploid, uncultivated intestinal symbiont Epulopiscium sp. type B using fluorescent in situ hybridization. We found that in new offspring, chromosome replication origins (oriCs) are arranged in a three-dimensional array throughout the cytoplasm. As development progresses, most oriCs become peripherally located. Siblings within a mother cell have similar numbers of oriCs. When chromosome orientation was assessed in situ by labeling two chromosomal regions, no specific pattern was detected. The Epulopiscium genome codes for many of the conserved positional guide proteins used for chromosome segregation in bacteria. Based on this study, we present a model that conserved chromosomal maintenance proteins, combined with entropic demixing, provide the forces necessary for distributing oriCs. Without the positional regulation afforded by radial confinement, chromosomes are more randomly oriented in Epulopiscium than in most small rod-shaped cells. Furthermore, we suggest that the random orientation of individual chromosomes in large polyploid cells would not hamper reproductive success as it would in smaller cells with more limited genomic resources.


Asunto(s)
Segregación Cromosómica/fisiología , Clostridiales/metabolismo , Origen de Réplica/fisiología , Bacterias/genética , Proteínas Bacterianas/metabolismo , Clostridiales/genética , Replicación del ADN/genética , ADN Bacteriano/metabolismo , Hibridación Fluorescente in Situ , Poliploidía , Origen de Réplica/genética
8.
Nat Commun ; 6: 6312, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25692519

RESUMEN

Animals bear communities of gut microorganisms with substantial effects on animal nutrition, but the host genetic basis of these effects is unknown. Here we use Drosophila to demonstrate substantial among-genotype variation in the effects of eliminating the gut microbiota on five host nutritional indices (weight, protein, lipid, glucose and glycogen contents); this includes variation in both the magnitude and direction of microbiota-dependent effects. Genome-wide association studies to identify the genetic basis of the microbiota-dependent variation reveal polymorphisms in largely non-overlapping sets of genes associated with variation in the nutritional traits, including strong representation of conserved genes functioning in signalling. Key genes identified by the GWA study are validated by loss-of-function mutations that altered microbiota-dependent nutritional effects. We conclude that the microbiota interacts with the animal at multiple points in the signalling and regulatory networks that determine animal nutrition. These interactions with the microbiota are probably conserved across animals, including humans.


Asunto(s)
Drosophila melanogaster/genética , Drosophila melanogaster/microbiología , Tracto Gastrointestinal/microbiología , Microbiota , Fenómenos Fisiológicos de la Nutrición , Wolbachia/fisiología , Animales , Estudios de Asociación Genética , Variación Genética , Genotipo , Glucosa/química , Glucógeno/química , Lípidos/química , Mutación , Fenotipo , Polimorfismo de Nucleótido Simple , Transducción de Señal
9.
Front Microbiol ; 5: 576, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25408687

RESUMEN

Symbiosis is often characterized by co-evolutionary changes in the genomes of the partners involved. An understanding of these changes can provide insight into the nature of the relationship, including the mechanisms that initiate and maintain an association between organisms. In this study we examined the genome sequences of bacteria isolated from the Drosophila melanogaster gut with the objective of identifying genes that are important for function in the host. We compared microbiota isolates with con-specific or closely related bacterial species isolated from non-fly environments. First the phenotype of germ-free Drosophila (axenic flies) was compared to that of flies colonized with specific bacteria (gnotobiotic flies) as a measure of symbiotic function. Non-fly isolates were functionally distinct from bacteria isolated from flies, conferring slower development and an altered nutrient profile in the host, traits known to be microbiota-dependent. Comparative genomic methods were next employed to identify putative symbiosis factors: genes found in bacteria that restore microbiota-dependent traits to gnotobiotic flies, but absent from those that do not. Factors identified include riboflavin synthesis and stress resistance. We also used a phylogenomic approach to identify protein coding genes for which fly-isolate sequences were more similar to each other than to other sequences, reasoning that these genes may have a shared function unique to the fly environment. This method identified genes in Acetobacter species that cluster in two distinct genomic loci: one predicted to be involved in oxidative stress detoxification and another encoding an efflux pump. In summary, we leveraged genomic and in vivo functional comparisons to identify candidate traits that distinguish symbiotic bacteria. These candidates can serve as the basis for further work investigating the genetic requirements of bacteria for function and persistence in the Drosophila gut.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...