Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
RSC Med Chem ; 15(5): 1589-1600, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38784463

RESUMEN

Respiratory tract infections involving a variety of microorganisms such as viruses, bacteria, and fungi are a prominent cause of morbidity and mortality globally, exacerbating various pre-existing respiratory and non-respiratory conditions. Moreover, the ability of bacteria and viruses to coexist might impact the development and severity of lung infections, promoting bacterial colonization and subsequent disease exacerbation. Secondary bacterial infections following viral infections represent a complex challenge to be overcome from a therapeutic point of view. We report herein our efforts in the development of new bithiazole derivatives showing broad-spectrum antimicrobial activity against both viruses and bacteria. A series of 4-trifluoromethyl bithiazole analogues was synthesized and screened against selected viruses (hRVA16, EVD68, and ZIKV) and a panel of Gram-positive and Gram-negative bacteria. Among them, two promising broad-spectrum antimicrobial compounds (8a and 8j) have been identified: both compounds showed low micromolar activity against all tested viruses, 8a showed synergistic activity against E. coli and A. baumannii in the presence of a subinhibitory concentration of colistin, while 8j showed a broader spectrum of activity against Gram-positive and Gram-negative bacteria. Activity against antibiotic-resistant clinical isolates is also reported. Given the ever-increasing need to adequately address viral and bacterial infections or co-infections, this study paves the way for the development of new agents with broad antimicrobial properties and synergistic activity with common antivirals and antibacterials.

2.
Eur J Med Chem ; 270: 116362, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574637

RESUMEN

Antimicrobial resistance (AMR) represents one of the most challenging global Public Health issues, with an alarmingly increasing rate of attributable mortality. This scenario highlights the urgent need for innovative medicinal strategies showing activity on resistant isolates (especially, carbapenem-resistant Gram-negative bacteria, methicillin-resistant S. aureus, and vancomycin-resistant enterococci) yielding new approaches for the treatment of bacterial infections. We previously reported AlkylGuanidino Ureas (AGUs) with broad-spectrum antibacterial activity and a putative membrane-based mechanism of action. Herein, new tetra- and mono-guanidino derivatives were designed and synthesized to expand the structure-activity relationships (SARs) and, thereby, tested on the same panel of Gram-positive and Gram-negative bacteria. The membrane-active mechanism of selected compounds was then investigated through molecular dynamics (MD) on simulated bacterial membranes. In the end, the newly synthesized series, along with the whole library of compounds (more than 70) developed in the last decade, was tested in combination with subinhibitory concentrations of the last resort antibiotic colistin to assess putative synergistic or additive effects. Moreover, all the AGUs were subjected to cheminformatic and machine learning analyses to gain a deeper knowledge of the key features required for bioactivity.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Colistina/farmacología , Bacterias Gramnegativas , Bacterias Grampositivas , Bacterias , Análisis de Datos , Pruebas de Sensibilidad Microbiana
3.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38139809

RESUMEN

The worldwide emergence and dissemination of Gram-negative bacteria expressing metallo-ß-lactamases (MBLs) menace the efficacy of all ß-lactam antibiotics, including carbapenems, a last-line treatment usually restricted to severe pneumonia and urinary tract infections. Nonetheless, no MBL inhibitor is yet available in therapy. We previously identified a series of 1,2,4-triazole-3-thione derivatives acting as micromolar inhibitors of MBLs in vitro, but devoid of synergistic activity in microbiological assays. Here, via a multidisciplinary approach, including molecular modelling, synthesis, enzymology, microbiology, and X-ray crystallography, we optimized this series of compounds and identified low micromolar inhibitors active against clinically relevant MBLs (NDM-1- and VIM-type). The best inhibitors increased, to a certain extent, the susceptibility of NDM-1- and VIM-4-producing clinical isolates to meropenem. X-ray structures of three selected inhibitors in complex with NDM-1 elucidated molecular recognition at the base of potency improvement, confirmed in silico predicted orientation, and will guide further development steps.

4.
ACS Infect Dis ; 9(8): 1546-1557, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37439673

RESUMEN

Addressing antibacterial resistance is a major concern of the modern world. The development of new approaches to meet this deadly threat is a critical priority. In this article, we investigate a new approach to negate bacterial resistance: exploit the ß-lactam bond cleavage by ß-lactamases to selectively trigger antibacterial prodrugs into the bacterial periplasm. Indeed, multidrug-resistant Gram-negative pathogens commonly produce several ß-lactamases that are able to inactivate ß-lactam antibiotics, our most reliable and widely used therapeutic option. The chemical structure of these prodrugs is based on a monobactam promoiety, covalently attached to the active antibacterial substance, zidovudine (AZT). We describe the synthesis of 10 prodrug analogues (5a-h) in four to nine steps and their biological activity. Selective enzymatic activation by a panel of ß-lactamases is demonstrated, and subsequent structure-activity relationships are discussed. The best compounds are further evaluated for their activity on both laboratory strains and clinical isolates, preliminary stability, and toxicity.


Asunto(s)
Profármacos , beta-Lactamas , beta-Lactamas/farmacología , beta-Lactamasas , Zidovudina/farmacología , Profármacos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias Gramnegativas
5.
ChemMedChem ; 18(16): e202300200, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37221137

RESUMEN

The plethora of viral outbreaks experienced in the last decade, together with the widespread distribution of many re-emerging and newly emerging viruses, emphasize the urgent need for novel broad-spectrum antivirals as tools for early intervention in case of future epidemics. Non-natural nucleosides have been at the forefront for the treatment of infectious diseases for many years and still represent one of the most successful classes of antiviral molecules on the market. In the attempt to explore the biologically relevant chemical space of this class of antimicrobials, we describe herein the development of novel base-modified nucleosides by converting previously identified 2,6-diaminopurine antivirals into the corresponding D/L ribonucleosides, acyclic nucleosides and prodrug derivatives. A phenotypic screening against viruses belonging to different families (Flaviviridae, Coronaviridae, Retroviridae) and against a panel of Gram-positive and Gram-negative bacteria, allowed to identify a few interesting molecules with broad-spectrum antimicrobial activities.


Asunto(s)
Antivirales , Virus , Humanos , Antivirales/química , Nucleósidos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias Gramnegativas , Bacterias Grampositivas
6.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37175704

RESUMEN

New classes of antibacterial drugs are urgently needed to address the global issue of antibiotic resistance. In this context, peptaibols are promising membrane-active peptides since they are not involved in innate immunity and their antimicrobial activity does not involve specific cellular targets, therefore reducing the chance of bacterial resistance development. Trichogin GA IV is a nonhemolytic, natural, short-length peptaibol active against Gram-positive bacteria and resistant to proteolysis. In this work, we report on the antibacterial activity of cationic trichogin analogs. Several peptides appear non-hemolytic and strongly active against many clinically relevant bacterial species, including antibiotic-resistant clinical isolates, such as Staphylococcus aureus, Acinetobacter baumannii, and extensively drug-resistant Pseudomonas aeruginosa, against which there are only a limited number of antibiotics under development. Our results further highlight how the modification of natural peptides is a valuable strategy for obtaining improved antibacterial agents with potential therapeutic applications.


Asunto(s)
Acinetobacter baumannii , Peptaiboles , Péptidos Catiónicos Antimicrobianos/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias , Staphylococcus aureus , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Farmacorresistencia Bacteriana Múltiple
7.
J Enzyme Inhib Med Chem ; 38(1): 2201402, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37073528

RESUMEN

Vibrio cholerae causes life-threatening infections in low-income countries due to the rise of antibacterial resistance. Innovative pharmacological targets have been investigated and carbonic anhydrases (CAs, EC: 4.2.1.1) encoded by V. cholerae (VchCAs) emerged as a valuable option. Recently, we developed a large library of para- and meta-benzenesulfonamides characterised by moieties with a different flexibility degree as CAs inhibitors. Stopped flow-based enzymatic assays showed strong inhibition of VchαCA for this library, while lower affinity was detected against the other isoforms. In particular, cyclic urea 9c emerged for a nanomolar inhibition of VchαCA (KI = 4.7 nM) and high selectivity with respect to human isoenzymes (SI≥ 90). Computational studies revealed the influence of moiety flexibility on inhibitory activity and isoform selectivity and allowed accurate SARs. However, although VchCAs are involved in the bacterium virulence and not in its survival, we evaluated the antibacterial activity of such compounds, resulting in no direct activity.


Asunto(s)
Anhidrasas Carbónicas , Vibrio cholerae , Humanos , Relación Estructura-Actividad , Estructura Molecular , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/química , Relación Dosis-Respuesta a Droga , Anhidrasas Carbónicas/metabolismo , Bencenosulfonamidas
8.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36674628

RESUMEN

Streptomyces lunaelactis strains have been isolated from moonmilk deposits, which are calcium carbonate speleothems used for centuries in traditional medicine for their antimicrobial properties. Genome mining revealed that these strains are a remarkable example of a Streptomyces species with huge heterogeneity regarding their content in biosynthetic gene clusters (BGCs) for specialized metabolite production. BGC 28a is one of the cryptic BGCs that is only carried by a subgroup of S. lunaelactis strains for which in silico analysis predicted the production of nonribosomal peptide antibiotics containing the non-proteogenic amino acid piperazic acid (Piz). Comparative metabolomics of culture extracts of S. lunaelactis strains either holding or not holding BGC 28a combined with MS/MS-guided peptidogenomics and 1H/13C NMR allowed us to identify the cyclic hexapeptide with the amino acid sequence (D-Phe)-(L-HO-Ile)-(D-Piz)-(L-Piz)-(D-Piz)-(L-Piz), called lunaemycin A, as the main compound synthesized by BGC 28a. Molecular networking further identified 18 additional lunaemycins, with 14 of them having their structure elucidated by HRMS/MS. Antimicrobial assays demonstrated a significant bactericidal activity of lunaemycins against Gram-positive bacteria, including multi-drug resistant clinical isolates. Our work demonstrates how an accurate in silico analysis of a cryptic BGC can highly facilitate the identification, the structural elucidation, and the bioactivity of its associated specialized metabolites.


Asunto(s)
Antiinfecciosos , Streptomyces , Antibacterianos/farmacología , Antibacterianos/metabolismo , Espectrometría de Masas en Tándem , Antiinfecciosos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Familia de Multigenes
9.
Mol Divers ; 27(3): 1489-1499, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36036302

RESUMEN

Trifluoroacetic acid (TFA), due to its strong acidity and low boiling point, is extensively used in protecting groups-based synthetic strategies. Indeed, synthetic compounds bearing basic functions, such as amines or guanidines (commonly found in peptido or peptidomimetic derivatives), developed in the frame of drug discovery programmes, are often isolated as trifluoroacetate (TF-Acetate) salts and their biological activity is assessed as such in in vitro, ex vivo, or in vivo experiments. However, the presence of residual amounts of TFA was reported to potentially affect the accuracy and reproducibility of a broad range of cellular assays (e. g. antimicrobial susceptibility testing, and cytotoxicity assays) limiting the further development of these derivatives. Furthermore, the impact of the counterion on biological activity, including TF-Acetate, is still controversial. Herein, we present a focused case study aiming to evaluate the activity of an antibacterial AlkylGuanidino Urea (AGU) compound obtained as TF-Acetate (1a) and hydrochloride (1b) salt forms to highlight the role of counterions in affecting the biological activity. We also prepared and tested the corresponding free base (1c). The exchange of the counterions applied to polyguanidino compounds represents an unexplored and challenging field, which required significant efforts for the successful optimization of reliable methods of preparation, also reported in this work. In the end, the biological evaluation revealed a quite similar biological profile for the salt derivatives 1a and 1b and a lower potency was found for the free base 1c.


Asunto(s)
Aminas , Antibacterianos , Reproducibilidad de los Resultados , Antibacterianos/farmacología
10.
Antibiotics (Basel) ; 11(12)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36551489

RESUMEN

The diffusion of antibiotic-resistant, Gram-negative, opportunistic pathogens, an increasingly important global public health issue, causes a significant socioeconomic burden. Acinetobacter baumannii isolates, despite causing a lower number of infections than Enterobacterales, often show multidrug-resistant phenotypes. Carbapenem resistance is also rather common, prompting the WHO to include carbapenem-resistant A. baumannii as a "critical priority" for the discovery and development of new antibacterial agents. In a previous work, we identified several series of compounds showing either direct-acting or synergistic activity against relevant Gram-negative species, including A. baumannii. Among these, two pyrazole compounds, despite being devoid of any direct-acting activity, showed remarkable synergistic activity in the presence of a subinhibitory concentration of colistin on K. pneumoniae and A. baumannii and served as a starting point for the synthesis of new analogues. In this work, a new series of 47 pyrazole compounds was synthesized. Some compounds showed significant direct-acting antibacterial activity on Gram-positive organisms. Furthermore, an evaluation of their activity as potential antibiotic adjuvants allowed for the identification of two highly active compounds on MDR Acinetobacter baumannii, including colistin-resistant isolates. This work confirms the interest in pyrazole amides as a starting point for the optimization of synergistic antibacterial compounds active on antibiotic-resistant, Gram-negative pathogens.

11.
J Med Chem ; 65(24): 16392-16419, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36450011

RESUMEN

Metallo-ß-lactamases (MBLs) contribute to the resistance of Gram-negative bacteria to carbapenems, last-resort antibiotics at hospital, and MBL inhibitors are urgently needed to preserve these important antibacterial drugs. Here, we describe a series of 1,2,4-triazole-3-thione-based inhibitors displaying an α-amino acid substituent, which amine was mono- or disubstituted by (hetero)aryl groups. Compounds disubstituted by certain nitrogen-containing heterocycles showed submicromolar activities against VIM-type enzymes and strong NDM-1 inhibition (Ki = 10-30 nM). Equilibrium dialysis, native mass spectrometry, isothermal calorimetry (ITC), and X-ray crystallography showed that the compounds inhibited both VIM-2 and NDM-1 at least partially by stripping the catalytic zinc ions. These inhibitors also displayed a very potent synergistic activity with meropenem (16- to 1000-fold minimum inhibitory concentration (MIC) reduction) against VIM-type- and NDM-1-producing ultraresistant clinical isolates, including Enterobacterales and Pseudomonas aeruginosa. Furthermore, selected compounds exhibited no or moderate toxicity toward HeLa cells, favorable absorption, distribution, metabolism, excretion (ADME) properties, and no or modest inhibition of several mammalian metalloenzymes.


Asunto(s)
Tionas , Inhibidores de beta-Lactamasas , Humanos , Inhibidores de beta-Lactamasas/farmacología , Inhibidores de beta-Lactamasas/química , Tionas/farmacología , Células HeLa , Antibacterianos/farmacología , Antibacterianos/química , beta-Lactamasas/metabolismo , Pruebas de Sensibilidad Microbiana
12.
Bioorg Med Chem ; 72: 116964, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36030663

RESUMEN

Metallo-ß-lactamases (MBLs) represent an increasingly serious threat to public health because of their increased prevalence worldwide in relevant opportunistic Gram-negative pathogens. MBLs efficiently inactivate widely used and most valuable ß-lactam antibiotics, such as oxyiminocephalosporins (ceftriaxone, ceftazidime) and the last-resort carbapenems. To date, no MBL inhibitor has been approved for therapeutic applications. We are developing inhibitors characterized by a 1,2,4-triazole-3-thione scaffold as an original zinc ligand and few promising series were already reported. Here, we present the synthesis and evaluation of a new series of compounds characterized by the presence of an arylalkyl substituent at position 4 of the triazole ring. The alkyl link was mainly an ethylene, but a few compounds without alkyl or with an alkyl group of various lengths up to a butyl chain were also synthesized. Some compounds in both sub-series were micromolar to submicromolar inhibitors of tested VIM-type MBLs. A few of them were broad-spectrum inhibitors, as they showed significant inhibitory activity on NDM-1 and, to a lesser extent, IMP-1. Among these, several inhibitors were able to significantly reduce the meropenem MIC on VIM-1- and VIM-4- producing clinical isolates by up to 16-fold. In addition, ACE inhibition was absent or moderate and one promising compound did not show toxicity toward HeLa cells at concentrations up to 250 µM. This series represents a promising basis for further exploration. Finally, molecular modelling of representative compounds in complex with VIM-2 was performed to study their binding mode.


Asunto(s)
Tionas , Inhibidores de beta-Lactamasas , Humanos , Antibacterianos/farmacología , Inhibidores de beta-Lactamasas/química , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo , Carbapenémicos/farmacología , Ceftazidima , Ceftriaxona , Etilenos , Células HeLa , Ligandos , Meropenem , Pruebas de Sensibilidad Microbiana , Triazoles/química , Triazoles/farmacología , Zinc
13.
ChemMedChem ; 17(17): e202200277, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35638249

RESUMEN

Cystic fibrosis (CF) is a genetic disease caused by loss-of-function mutations in the CFTR gene, which codes for a defective ion channel. This causes an electrolyte imbalance and results in a spiral of negative effects on multiple organs, most notably the accumulation of thick mucus in the lungs, chronic respiratory tract infections and inflammation leading to pulmonary exacerbation and premature death. Progressive decline of lung function is mainly linked to persistent or recurring infections, mostly caused by bacteria, which require treatments with antibiotics and represent one of the major life-limiting factors in subjects with CF. Treatment of such a complex disease require multiple drugs with a consequent therapeutic burden and complications caused by drug-drug interactions and rapid emergence of bacterial drug resistance. We report herein our recent efforts in developing innovative multifunctional antibiotics specifically tailored to CF by a direct action on bacterial topoisomerases and a potential indirect effect on the pulmonary mucociliary clearance mediated by ΔF508-CFTR correction. The obtained results may pave the way for the development of a simplified therapeutic approach with a single agent acting as multifunctional Antibacterial-Corrector.


Asunto(s)
Fibrosis Quística , Microbiota , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Pulmón , Mutación
14.
Eur J Med Chem ; 231: 114158, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35168113

RESUMEN

The ever-faster rise of antimicrobial resistance (AMR) represents a major global Public Health challenge. New chemical entities with innovative Modes of Action (MoAs) are thus desirable. We recently reported the development of a novel class of broad-spectrum bactericidal agents, the AlkylGuanidino Ureas (AGU). Due to their polycationic structure, they likely target bacterial membranes. In order to better understand their MoA, we synthesized a library of AGU derivatives by structural simplification of selected hit compounds and developed specific assays based on membrane models by means of both analytical and computational techniques. Cell-based assays provided experimental evidence that AGUs disrupt bacterial membranes without showing hemolytic behavior. Hence, we herein report a thorough chemical and biological characterization of a new series of AGUs obtained through molecular simplification, allowing the rational design of potent antibacterial compounds active on antibiotic-resistant strains.


Asunto(s)
Antibacterianos , Urea , Antibacterianos/química , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Urea/farmacología
15.
ChemMedChem ; 17(7): e202100699, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35050549

RESUMEN

Metallo-ß-lactamases (MBLs) are increasingly involved as a major mechanism of resistance to carbapenems in relevant opportunistic Gram-negative pathogens. Unfortunately, clinically efficient MBL inhibitors still represent an unmet medical need. We previously reported several series of compounds based on the 1,2,4-triazole-3-thione scaffold. In particular, Schiff bases formed between diversely 5-substituted-4-amino compounds and 2-carboxybenzaldehyde were broad-spectrum inhibitors of VIM-type, NDM-1 and IMP-1 MBLs. Unfortunately, these compounds were unable to restore antibiotic susceptibility of MBL-producing bacteria, probably because of poor penetration and/or susceptibility to hydrolysis. To improve their microbiological activity, we synthesized and characterized compounds where the hydrazone-like bond of the Schiff base analogues was replaced by a stable ethyl link. This small change resulted in a narrower inhibition spectrum, as all compounds were poorly or not inhibiting NDM-1 and IMP-1, but showed a significantly better activity on VIM-type enzymes, with Ki values in the µM to sub-µM range. The resolution of the crystallographic structure of VIM-2 in complex with one of the best inhibitors yielded valuable information about their binding mode. Interestingly, several compounds were shown to restore the ß-lactam susceptibility of VIM-type-producing E. coli laboratory strains and also of K. pneumoniae clinical isolates. In addition, selected compounds were found to be devoid of toxicity toward human cancer cells at high concentration, thus showing promising safety.


Asunto(s)
Tionas , Inhibidores de beta-Lactamasas , Antibacterianos/química , Antibacterianos/farmacología , Escherichia coli , Humanos , Pruebas de Sensibilidad Microbiana , Tionas/farmacología , Triazoles/química , Inhibidores de beta-Lactamasas/química , beta-Lactamasas/metabolismo
16.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34819373

RESUMEN

A protracted outbreak of New Delhi metallo-ß-lactamase (NDM)-producing carbapenem-resistant Klebsiella pneumoniae started in Tuscany, Italy, in November 2018 and continued in 2020 and through 2021. To understand the regional emergence and transmission dynamics over time, we collected and sequenced the genomes of 117 extensively drug-resistant, NDM-producing K. pneumoniae isolates cultured over a 20-mo period from 76 patients at several healthcare facilities in southeast Tuscany. All isolates belonged to high-risk clone ST-147 and were typically nonsusceptible to all first-line antibiotics. Albeit sporadic, resistances to colistin, tigecycline, and fosfomycin were also observed as a result of repeated, independent mutations. Genomic analysis revealed that ST-147 isolates circulating in Tuscany were monophyletic and highly genetically related (including a network of 42 patients from the same hospital and sharing nearly identical isolates), and shared a recent ancestor with clinical isolates from the Middle East. While the blaNDM-1 gene was carried by an IncFIB-type plasmid, our investigations revealed that the ST-147 lineage from Italy also acquired a hybrid IncFIB/IncHIB-type plasmid carrying the 16S methyltransferase armA gene as well as key virulence biomarkers often found in hypervirulent isolates. This plasmid shared extensive homologies with mosaic plasmids circulating globally including from ST-11 and ST-307 convergent lineages. Phenotypically, the carriage of this hybrid plasmid resulted in increased siderophore production but did not confer virulence to the level of an archetypical, hypervirulent K. pneumoniae in a subcutaneous model of infection with immunocompetent CD1 mice. Our findings highlight the importance of performing genomic surveillance to identify emerging threats.


Asunto(s)
Brotes de Enfermedades , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Klebsiella/epidemiología , Klebsiella pneumoniae/genética , Animales , Antibacterianos , Proteínas Bacterianas/genética , Biomarcadores , Carbapenémicos , Colistina , Biología Computacional/métodos , Infección Hospitalaria/epidemiología , Humanos , Italia/epidemiología , Estimación de Kaplan-Meier , Funciones de Verosimilitud , Ratones , Pruebas de Sensibilidad Microbiana , Preparaciones Farmacéuticas , Plásmidos , Polimorfismo de Nucleótido Simple , beta-Lactamasas/genética
17.
Eur J Med Chem ; 226: 113873, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34626878

RESUMEN

Metallo-ß-lactamases (MBLs) are important contributors of Gram-negative bacteria resistance to ß-lactam antibiotics. MBLs are highly worrying because of their carbapenemase activity, their rapid spread in major human opportunistic pathogens while no clinically useful inhibitor is available yet. In this context, we are exploring the potential of compounds based on the 1,2,4-triazole-3-thione scaffold as an original ligand of the di-zinc active sites of MBLs, and diversely substituted at its positions 4 and 5. Here, we present a new series of compounds substituted at the 4-position by a thioether-containing alkyl chain with a carboxylic and/or an aryl group at its extremity. Several compounds showed broad-spectrum inhibition with Ki values in the µM to sub-µM range against VIM-type enzymes, NDM-1 and IMP-1. The presence of the sulfur and of the aryl group was important for the inhibitory activity and the binding mode of a few compounds in VIM-2 was revealed by X-ray crystallography. Importantly, in vitro antibacterial susceptibility assays showed that several inhibitors were able to potentiate the activity of meropenem on Klebsiella pneumoniae clinical isolates producing VIM-1 or VIM-4, with a potentiation effect of up to 16-fold. Finally, a selected compound was found to only moderately inhibit the di-zinc human glyoxalase II, and several showed no or only moderate toxicity toward several human cells, thus favourably completing a promising behaviour.


Asunto(s)
Sulfuros/farmacología , Tionas/farmacología , Triazoles/farmacología , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Relación Estructura-Actividad , Sulfuros/química , Tionas/síntesis química , Tionas/química , Triazoles/síntesis química , Triazoles/química , Inhibidores de beta-Lactamasas/síntesis química , Inhibidores de beta-Lactamasas/química
18.
Bioorg Chem ; 113: 105024, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34116340

RESUMEN

In Gram-negative bacteria, the major mechanism of resistance to ß-lactam antibiotics is the production of one or several ß-lactamases (BLs), including the highly worrying carbapenemases. Whereas inhibitors of these enzymes were recently marketed, they only target serine-carbapenemases (e.g. KPC-type), and no clinically useful inhibitor is available yet to neutralize the class of metallo-ß-lactamases (MBLs). We are developing compounds based on the 1,2,4-triazole-3-thione scaffold, which binds to the di-zinc catalytic site of MBLs in an original fashion, and we previously reported its promising potential to yield broad-spectrum inhibitors. However, up to now only moderate antibiotic potentiation could be observed in microbiological assays and further exploration was needed to improve outer membrane penetration. Here, we synthesized and characterized a series of compounds possessing a diversely functionalized alkyl chain at the 4-position of the heterocycle. We found that the presence of a carboxylic group at the extremity of an alkyl chain yielded potent inhibitors of VIM-type enzymes with Ki values in the µM to sub-µM range, and that this alkyl chain had to be longer or equal to a propyl chain. This result confirmed the importance of a carboxylic function on the 4-substituent of 1,2,4-triazole-3-thione heterocycle. As observed in previous series, active compounds also preferentially contained phenyl, 2-hydroxy-5-methoxyphenyl, naphth-2-yl or m-biphenyl at position 5. However, none efficiently inhibited NDM-1 or IMP-1. Microbiological study on VIM-2-producing E. coli strains and on VIM-1/VIM-4-producing multidrug-resistant K. pneumoniae clinical isolates gave promising results, suggesting that the 1,2,4-triazole-3-thione scaffold worth continuing exploration to further improve penetration. Finally, docking experiments were performed to study the binding mode of alkanoic analogues in the active site of VIM-2.


Asunto(s)
Tionas/química , Inhibidores de beta-Lactamasas/química , beta-Lactamasas/química , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Sitios de Unión , Supervivencia Celular/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Escherichia coli/enzimología , Células HeLa , Humanos , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Unión Proteica , Relación Estructura-Actividad , Tionas/metabolismo , Triazoles/química , Inhibidores de beta-Lactamasas/metabolismo , beta-Lactamasas/metabolismo
19.
Eur J Med Chem ; 208: 112720, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32937203

RESUMEN

Resistance to ß-lactam antibiotics in Gram-negatives producing metallo-ß-lactamases (MBLs) represents a major medical threat and there is an extremely urgent need to develop clinically useful inhibitors. We previously reported the original binding mode of 5-substituted-4-amino/H-1,2,4-triazole-3-thione compounds in the catalytic site of an MBL. Moreover, we showed that, although moderately potent, they represented a promising basis for the development of broad-spectrum MBL inhibitors. Here, we synthesized and characterized a large number of 4-amino-1,2,4-triazole-3-thione-derived Schiff bases. Compared to the previous series, the presence of an aryl moiety at position 4 afforded an average 10-fold increase in potency. Among 90 synthetic compounds, more than half inhibited at least one of the six tested MBLs (L1, VIM-4, VIM-2, NDM-1, IMP-1, CphA) with Ki values in the µM to sub-µM range. Several were broad-spectrum inhibitors, also inhibiting the most clinically relevant VIM-2 and NDM-1. Active compounds generally contained halogenated, bicyclic aryl or phenolic moieties at position 5, and one substituent among o-benzoic, 2,4-dihydroxyphenyl, p-benzyloxyphenyl or 3-(m-benzoyl)-phenyl at position 4. The crystallographic structure of VIM-2 in complex with an inhibitor showed the expected binding between the triazole-thione moiety and the dinuclear centre and also revealed a network of interactions involving Phe61, Tyr67, Trp87 and the conserved Asn233. Microbiological analysis suggested that the potentiation activity of the compounds was limited by poor outer membrane penetration or efflux. This was supported by the ability of one compound to restore the susceptibility of an NDM-1-producing E. coli clinical strain toward several ß-lactams in the presence only of a sub-inhibitory concentration of colistin, a permeabilizing agent. Finally, some compounds were tested against the structurally similar di-zinc human glyoxalase II and found weaker inhibitors of the latter enzyme, thus showing a promising selectivity towards MBLs.


Asunto(s)
Bases de Schiff/farmacología , Tionas/farmacología , Triazoles/farmacología , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo , Cristalografía por Rayos X , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Pruebas de Sensibilidad Microbiana , Unión Proteica , Pseudomonas aeruginosa/química , Bases de Schiff/síntesis química , Bases de Schiff/metabolismo , Tionas/síntesis química , Tionas/metabolismo , Triazoles/síntesis química , Triazoles/metabolismo , Inhibidores de beta-Lactamasas/síntesis química , Inhibidores de beta-Lactamasas/metabolismo
20.
Sci Rep ; 10(1): 12763, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32728062

RESUMEN

Bacteria are known to evade ß-lactam antibiotic action by producing ß-lactamases (BLs), including carbapenemases, which are able to hydrolyze nearly all available ß-lactams. The production of BLs represents one of the best known and most targeted mechanisms of resistance in bacteria. We have performed the parallel screening of commercially available compounds against a panel of clinically relevant BLs: class A CTX-M-15 and KPC-2, subclass B1 NDM-1 and VIM-2 MBLs, and the class C P. aeruginosa AmpC. The results show that all BLs prefer scaffolds having electron pair donors: KPC-2 is preferentially inhibited by sulfonamide and tetrazole-based derivatives, NDM-1 by compounds bearing a thiol, a thiosemicarbazide or thiosemicarbazone moiety, while VIM-2 by triazole-containing molecules. Few broad-spectrum BLs inhibitors were identified; among these, compound 40 potentiates imipenem activity against an NDM-1-producing E. coli clinical strain. The binary complexes of the two most promising compounds binding NDM-1 and VIM-2 were obtained at high resolution, providing strong insights to improve molecular docking simulations, especially regarding the interaction of MBLs with inhibitors.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Serina/química , Inhibidores de beta-Lactamasas/farmacología , Antibacterianos/farmacología , Cristalografía por Rayos X , Bases de Datos de Proteínas , Diseño de Fármacos , Descubrimiento de Drogas , Escherichia coli/efectos de los fármacos , Hidrólisis , Ligandos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química , Semicarbacidas/química , Compuestos de Sulfhidrilo/química , Sulfonamidas/química , Tetrazoles/química , beta-Lactamasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA