Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mitochondrion ; 64: 125-135, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35337984

RESUMEN

Alzheimer's disease (AD) is a leading neurodegenerative pathology associated with aging worldwide. It is estimated that AD prevalence will increase from 5.8 million people today to 13.8 million by 2050 in the United States alone. AD effects in the brain are well known; however, there is still a lack of knowledge about the cellular mechanisms behind the origin of AD. It is known that AD induces cellular stress affecting the energy metabolism in brain cells. During the pathophysiological advancement of AD, damaged mitochondria enter a vicious cycle, producing reactive oxygen species (ROS), harming mitochondrial DNA and proteins, leading to more ROS and cellular death. Additionally, mitochondria are interconnected with the plaques formed by amyloid-ß in AD and have underlying roles in the progression of the disease and severity. For years, the biomedical field struggled to develop new therapeutic options for AD without a significant advancement. However, mitochondria are striking back existing outside cells in a new mechanism of intercellular communication. Extracellular mitochondria are exchanged from healthy to damaged cells to rescue those with a perturbed metabolism in a process that could be applied as a new therapeutic option to repair those brain cells affected by AD. In this review we highlight key aspects of mitochondria's role in CNS' physiology and neurodegenerative disorders, focusing on AD. We also suggest how mitochondria strikes back as a therapeutic target and as a potential agent to be transplanted to repair neurons affected by AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , ADN Mitocondrial/genética , Humanos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo
2.
Eur J Obstet Gynecol Reprod Biol ; 270: 231-238, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35124300

RESUMEN

Around two-thirds of women who are of reproductive age use some type of contraception. Two of the most effective long-acting reversible contraceptives (LARC) are the intrauterine device (IUD) and the subdermal contraceptive implant (SCI). Despite their effectiveness, women often report abnormal uterine bleeding as the reason for discontinuation. In this review, we analyze key aspects regarding the mechanisms of action of IUDs (both copper-containing and levonorgestrel-releasing) and SCIs, as well as how they change the intrauterine environment in order to provide effective contraception at a physiological level. Additionally, we introduce the pathophysiology of different types of abnormal intrauterine bleeding provoked by the mentioned LARCs. These three contraceptive methods work in diverse ways, thus, the etiology of abnormal uterine bleeding is different and multifactorial according to each LARC. This review intends to provide information in order to better our understanding of bleeding induced by these contraceptive methods, as well as introduce current and potential new therapies. Furthermore, this review intends to provide updated and concise information that could be available firsthand not only to health care providers but scientists who are innovating and revolutionizing this field. In 2013, the American College of Obstetricians and Gynecologists published a management of abnormal uterine bleeding, however, there is limited updated data regarding the physiology and pathophysiology of abnormal uterine bleeding and its treatment based on different LARCs (hormonal and non-hormonal).


Asunto(s)
Anticonceptivos Femeninos , Dispositivos Intrauterinos de Cobre , Dispositivos Intrauterinos Medicados , Dispositivos Intrauterinos , Anticoncepción/métodos , Anticonceptivos , Anticonceptivos Femeninos/efectos adversos , Femenino , Humanos , Dispositivos Intrauterinos de Cobre/efectos adversos , Dispositivos Intrauterinos Medicados/efectos adversos , Levonorgestrel/efectos adversos , Hemorragia Uterina/tratamiento farmacológico , Hemorragia Uterina/etiología
3.
NPJ Microgravity ; 7(1): 35, 2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34556658

RESUMEN

Exposure to microgravity and ionizing radiation during spaceflight missions causes excessive reactive oxygen species (ROS) production that contributes to cellular stress and damage in astronauts. Average spaceflight mission time is expected to lengthen as humanity aims to visit other planets. However, longer missions or spaceflights will undoubtedly lead to an increment in microgravity, ionizing radiation and ROS production. Strategies to minimize ROS damage are necessary to maintain the health of astronauts, future space colonists, and tourists during and after spaceflight missions. An antioxidant cocktail formulated to prevent or mitigate ROS damage during space exploration could help maintain the health of space explorers. We propose key points to consider when developing an antioxidant cocktail. We discuss how ROS damages our body and organs, the genetic predisposition of astronauts to its damage, characteristics and evidence of the effectiveness of antioxidants to combat excess ROS, differences in drug metabolism when on Earth and in space that could modify antioxidant effects, and the characteristics and efficacy of common antioxidants. Based on this information we propose a workflow for assessing astronaut resistance to ROS damage, infight monitoring of ROS production, and an antioxidant cocktail. Developing an antioxidant cocktail represents a big challenge to translate current medical practices from an Earth setting to space. The key points presented in this review could promote the development of different antioxidant formulations to maintain space explorers' health in the future.

4.
Mitochondrion ; 58: 255-269, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33662579

RESUMEN

The cerebrospinal fluid (CSF) has an important role in the transport of nutrients and signaling molecules to the central nervous and immune systems through its circulation along the brain and spinal cord tissues. The mitochondrial activity in the central nervous system (CNS) is essential in processes such as neuroplasticity, neural differentiation and production of neurotransmitters. Interestingly, extracellular and active mitochondria have been detected in the CSF where they act as a biomarker for the outcome of pathologies such as subarachnoid hemorrhage and delayed cerebral ischemia. Additionally, cell-free-circulating mitochondrial DNA (ccf-mtDNA) has been detected in both the CSF of healthy donors and in that of patients with neurodegenerative diseases. Key questions arise as there is still much debate regarding if ccf-mtDNA detected in CSF is associated with a diversity of active or inactive extracellular mitochondria coexisting in distinct pathologies. Additionally, it is of great scientific and medical importance to identify the role of extracellular mitochondria (active and inactive) in the CSF and the difference between them being damage associated molecular patterns (DAMPs) or factors that promote homeostasis. This review analyzes the different types of extracellular mitochondria, methods for their identification and their presence in CSF. Extracellular mitochondria in the CSF could have an important implication in health and disease, which may lead to the development of medical approaches that utilize mitochondria as therapeutic agents.


Asunto(s)
Líquido Cefalorraquídeo/metabolismo , Biomarcadores/metabolismo , Humanos , Mitocondrias/metabolismo
5.
Mitochondrion ; 58: 270-284, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33662580

RESUMEN

The diversity and coexistence of extracellular mitochondria may have a key role in the maintenance of health and progression of disease. Studies report that active mitochondria can be found physiologically outside of cells and circulating in the blood without inducing an inflammatory response. In addition, inactive or harmed mitochondria have been recognized as activators of immune cells, as they play an essential role in diseases characterized by the metabolic deregulation of these cells, such as sepsis. In this review we analyze key aspects regarding the existence of a diversity of extracellular mitochondria, their coexistence in body fluids and their effects on various immune cells. Additionally, we introduce models of how extracellular mitochondria could be interacting to maintain health and affect disease prognosis. Unwrapped mitochondria (freeMitos) can exist as viable, active, inactive or harmed organelles. Mitochondria can also be found wrapped in a membrane (wrappedMitos) that may differ depending on the cell of origin. Mitochondrial fragments can also be present in various body fluids as DAMPs, as mtDNA enclosed in vesicles or as circulating-cell-free mtDNA (ccf-mtDNA). Interestingly, the great quantity of evidence regarding the levels of ccf-mtDNA and their correlation with aging and disease allows for the identification of the diversity, but not type, of extracellular mitochondria. The existence of a diversity of mitochondria and their effects on immune cells opens a new concept in the biomedical field towards the understanding of health, the progression of disease and the development of mitochondria as therapeutic agents.


Asunto(s)
Sistema Inmunológico/fisiología , Mitocondrias/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...