Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37503003

RESUMEN

System-level understanding of proteome organization and function requires methods for direct visualization and manipulation of proteins at scale. We developed an approach enabled by high-throughput gene tagging for the generation and analysis of complex cell pools with endogenously tagged proteins. Proteins are tagged with HaloTag to enable visualization or direct perturbation. Fluorescent labeling followed by in situ sequencing and deep learning-based image analysis identifies the localization pattern of each tag, providing a bird's-eye-view of cellular organization. Next, we use a hydrophobic HaloTag ligand to misfold tagged proteins, inducing spatially restricted proteotoxic stress that is read out by single cell RNA sequencing. By integrating optical and perturbation data, we map compartment-specific responses to protein misfolding, revealing inter-compartment organization and direct crosstalk, and assigning proteostasis functions to uncharacterized genes. Altogether, we present a powerful and efficient method for large-scale studies of proteome dynamics, function, and homeostasis.

2.
Genome Res ; 29(8): 1322-1328, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31239279

RESUMEN

Genome editing tools have simplified the generation of knock-in gene fusions, yet the prevalent use of gene-specific homology-directed repair (HDR) templates still hinders scalability. Consequently, realization of large-scale gene tagging requires further development of approaches to generate knock-in protein fusions via generic donors that do not require locus-specific homology sequences. Here, we combine intron-based protein trapping with homology-independent repair-based integration of a generic donor and demonstrate precise, scalable, and efficient gene tagging. Because editing is performed in introns using a synthetic exon, this approach tolerates mutations in the unedited allele, indels at the integration site, and the addition of resistance genes that do not disrupt the target gene coding sequence, resulting in easy and flexible gene tagging.


Asunto(s)
Edición Génica/métodos , Genoma Humano , Intrones , Mutagénesis Insercional , Proteínas Recombinantes de Fusión/genética , Secuencia de Bases , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Calnexina/genética , Calnexina/metabolismo , Línea Celular Tumoral , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Exones , Fibroblastos/citología , Fibroblastos/metabolismo , Expresión Génica , Células HEK293 , Células HeLa , Humanos , Plásmidos/química , Plásmidos/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Vimentina/genética , Vimentina/metabolismo
3.
Trends Genet ; 33(9): 580-582, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28764860

RESUMEN

CRISPR saturation mutagenesis has the potential to dissect the functional landscape of noncoding regions, but is highly susceptible to false discovery and misinterpretation. As recently published, Canver et al. have now taken the first steps towards addressing these issues by increasing screening resolution and analyzing the effects of off targets on hit calling.


Asunto(s)
Sistemas CRISPR-Cas , Genoma Humano , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...