RESUMEN
Objective: The present study is aimed at introducing and evaluating MaterniCode, a state-of-the-art bioinformatic pipeline for noninvasive prenatal testing (NIPT) that leverages the Ion Torrent semiconductor sequencing platform. The initiative strives to revolutionize prenatal diagnostics by offering a rapid and cost-effective method without sacrificing accuracy. Methods: Two distinct bioinformatic strategies were employed for fetal sex determination, one of which achieved 100% accuracy. We analyzed 1225 maternal blood samples for fetal aneuploidies, benchmarking against the industry standard Illumina VeriSeq™ NIPT Solution v2. The capability of MaterniCode to detect and characterize complex chromosomal anomalies was also assessed. Results: MaterniCode achieved near-perfect accuracy in fetal sex determination through chromosome Y (chrY )-specific gene analysis, whereas the alternative method, employing the ratio of high-quality mapped reads on chrY relative to all reads, delivered 100% accuracy. For fetal aneuploidy detection, both the integrated WisecondorX and NIPTeR algorithms demonstrated a 100% sensitivity and specificity rate, consistent with Illumina VeriSeq™ NIPT Solution v2. The pipeline also successfully identified and precisely mapped significant chromosomal abnormalities, exemplified by a 2.4 Mb deletion on chromosome 13 and a 3 Mb duplication on chromosome 2. Conclusion: MaterniCode has proven to be an innovative and highly efficient tool in the domain of NIPT, demonstrating excellent sensitivity and specificity. Its robust capability to effectively detect a wide range of complex chromosomal aberrations, including rare and subtle variations, positions it as a promising and valuable addition to prenatal diagnostic technologies. This enhancement to diagnostic precision significantly aids clinicians in making informed decisions during pregnancy management.
RESUMEN
Malassezia yeasts belong to the normal skin microbiota of a wide range of warm-blooded animals. However, their significance in cattle is still poorly understood. In the present study, the mycobiota of the external ear canal of 20 healthy dairy Holstein cows was assessed by cytology, culture, PCR, and next-generation sequencing. The presence of Malassezia was detected in 15 cows by cytology and PCR. The metagenomic analysis revealed that Ascomycota was the predominant phylum but M. pachydermatis the main species. The Malassezia phylotype 131 was detected in low abundance. Nor M. nana nor M. equina were detected in the samples.
The mycobiota of the external ear canal of healthy cows was assessed by cytology, culture, PCR, and NGS. The presence of Malassezia was detected by cytology and PCR. Ascomycota was the main phylum and M. pachydermatis the main species. The Malassezia phylotype 131 was also detected in the samples.
Asunto(s)
Conducto Auditivo Externo , Malassezia , Micobioma , Animales , Bovinos , Conducto Auditivo Externo/microbiología , Malassezia/aislamiento & purificación , Malassezia/clasificación , Malassezia/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Femenino , Metagenómica , Reacción en Cadena de la PolimerasaRESUMEN
While current anti-Spike protein (SP) vaccines have been pivotal in managing the pandemic, their limitations in delivery, storage, and the inability to provide mucosal immunization (preventing infections) highlight the ongoing necessity for research and innovation. To tackle these constraints, our research group developed a bacterial-based vaccine using a non-pathogenic E. coli Nissle 1917 (EcN) strain genetically modified to express the SARS-CoV-2 spike protein on its surface (EcN-pAIDA1-SP). We intranasally delivered the EcN-pAIDA1-SP in two doses and checked specific IgG/IgA production as well as the key immune mediators involved in the process. Moreover, following the initial and booster vaccine doses, we exposed both immunized and non-immunized mice to intranasal delivery of SARS-CoV-2 SP to assess the effectiveness of EcN-pAIDA1-SP in protecting lung tissue from the inflammation damage. We observed detectable levels of anti-SARS-CoV-2 spike IgG in serum samples and IgA in bronchoalveolar lavage fluid two weeks after the initial treatment, with peak concentrations in the respective samples on the 35th day. Moreover, immunoglobulins displayed a progressively enhanced avidity index, suggesting a selective binding to the spike protein. Finally, the pre-immunized group displayed a decrease in proinflammatory markers (TLR4, NLRP3, ILs) following SP challenge, compared to the non-immunized groups, along with better preservation of tissue morphology. Our probiotic-based technology provides an effective immunobiotic tool to protect individuals against disease and control infection spread.
Asunto(s)
Administración Intranasal , Vacunas contra la COVID-19 , Escherichia coli , Glicoproteína de la Espiga del Coronavirus , Animales , Femenino , Ratones , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/prevención & control , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Inmunización/métodos , Inmunoglobulina A/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Pulmón/inmunología , Pulmón/patología , Pulmón/microbiología , Pulmón/metabolismo , Lesión Pulmonar/prevención & control , Lesión Pulmonar/inmunología , Ratones Endogámicos BALB C , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunologíaRESUMEN
'Corbarino' (COR) and 'Lucariello' (LUC) belong to the family of Mediterranean long shelf-life tomato landraces, producing high quality fruits under low water input cultivation regime in their traditional cultivation area. Understanding the morpho-physiological and molecular details of the peculiar drought stress tolerance of these two genotypes may be key to their valorization as breeding material. RNA sequencing of leaf samples of COR and LUC subjected to drought stress by water withholding in a semi-controlled greenhouse identified 3089 and 2135 differentially expressed genes respectively. These included COR- and LUC-specific annotated genes, as well as genes containing single nucleotide polymorphisms as compared to reference genome. Enriched Gene Ontology categories showed that categories such as response to water, oxidoreductase activity, nucleotide salvation and lipid biosynthesis-related processes were enriched among up-regulated DEGs. By contrast, growth and photosynthesis related genes were down-regulated after drought stress, consistent with leaf gas exchange and biomass accumulation measurements. Genes encoding cell wall degrading enzymes of the pectinase family were also down-regulated in drought stress conditions and upregulated in rewatering, indicating that cell wall composition/hardness is important for drought stress responses. Globally our results contribute to understanding the transcriptomic and physiological responses of representative tomato genotypes from Southern Italy, highlighting a promising set of genes to be investigated to improve tomato tolerance to drought.
Asunto(s)
Solanum lycopersicum , Agua , Agua/metabolismo , Transcriptoma/genética , Solanum lycopersicum/genética , Fitomejoramiento , Perfilación de la Expresión Génica , Sequías , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las PlantasRESUMEN
As of October 2022, the COVID-19 pandemic continues to pose a major public health conundrum, with increased rates of symptomatic infections in vaccinated individuals. An ideal vaccine candidate for the prevention of outbreaks should be rapidly scalable, easy to administer, and able to elicit a potent mucosal immunity. Towards this aim, we proposed an engineered Escherichia coli (E. coli) Nissle 1917 (EcN) strain with SARS-CoV-2 spike protein (SP)-coding plasmid, which was able to expose SP on its cellular surface by a hybridization with the adhesin involved in diffuse adherence 1 (AIDA1). In this study, we presented the effectiveness of a 16-week intragastrically administered, engineered EcN in producing specific systemic and mucosal immunoglobulins against SARS-CoV-2 SP in mice. We observed a time-dependent increase in anti-SARS-CoV-2 SP IgG antibodies in the sera at week 4, with a titre that more than doubled by week 12 and a stable circulating titre by week 16 (+309% and +325% vs. control; both p < 0.001). A parallel rise in mucosal IgA antibody titre in stools, measured via intestinal and bronchoalveolar lavage fluids of the treated mice, reached a plateau by week 12 and until the end of the immunization protocol (+300, +47, and +150%, at week 16; all p < 0.001 vs. controls). If confirmed in animal models of infection, our data indicated that the engineered EcN may be a potential candidate as an oral vaccine against COVID-19. It is safe, inexpensive, and, most importantly, able to stimulate the production of both systemic and mucosal anti-SARS-CoV-2 spike-protein antibodies.
Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Animales , Ratones , Glicoproteína de la Espiga del Coronavirus/genética , Escherichia coli/genética , Vacunas contra la COVID-19 , Formación de Anticuerpos , Pandemias , COVID-19/prevención & control , SARS-CoV-2 , Inmunización/métodos , Anticuerpos AntiviralesRESUMEN
The yeast Malassezia pachydermatis is a common inhabitant of the skin and mucosae of dogs. However, under certain circumstances this yeast can overgrow and act as an opportunistic pathogen causing otitis and dermatitis in dogs. Canine pododermatitis is a common disorder in dogs in which M. pachydermatis acts as an opportunistic pathogen. In the present study, the presence of Malassezia yeasts was assessed and quantified in samples collected from the interdigital space of dogs with pododermatitis before and after treatment, and from healthy dogs. The samples were subjected to two different cytological examinations, culture on Sabouraud glucose agar and modified Dixon's agar and a quantitative PCR targeting the internal transcribed spacer (ITS) genomic region. A selection of samples was analyzed by next generation sequencing (NGS) using the D1D2 domain of the large subunit of the ribosomal DNA as target. The pododermatitis samples before treatment showed higher cell counts, colony-forming units and ITS copies than the rest of samples. The NGS analysis revealed that Ascomycota was the main phylum in the healthy and post-treatment samples. However, Basidiomycota and M. pachydermatis was more abundant in the pododermatitis samples before treatment. These results support M. pachydermatis as an opportunistic agent in canine pododermatitis by a variety of methods, and demonstrate the correlation between cytologic and molecular methods for quantification.
Asunto(s)
Dermatitis , Enfermedades de los Perros , Malassezia , Animales , Perros , Malassezia/genética , Saccharomyces cerevisiae , Agar , Dermatitis/veterinariaRESUMEN
BACKGROUND: The role of the pulmonary microbiome in sarcoidosis is unknown. The objectives of this study were the following: (1) examine whether the pulmonary fungal and bacterial microbiota differed in patients with sarcoidosis compared with controls; (2) examine whether there was an association between the microbiota and levels of the antimicrobial peptides (AMPs) in protected bronchoalveolar lavage (PBAL). METHODS: Thirty-five sarcoidosis patients and 35 healthy controls underwent bronchoscopy and were sampled with oral wash (OW), protected BAL (PBAL), and left protected sterile brushes (LPSB). The fungal ITS1 region and the V3V4 region of the bacterial 16S rRNA gene were sequenced. Bioinformatic analyses were performed with QIIME 2. The AMPs secretory leucocyte protease inhibitor (SLPI) and human beta defensins 1 and 2 (hBD-1 and hBD-2), were measured in PBAL by enzyme-linked immunosorbent assay (ELISA). RESULTS: Aspergillus dominated the PBAL samples in sarcoidosis. Differences in bacterial taxonomy were minor. There was no significant difference in fungal alpha diversity between sarcoidosis and controls, but the bacterial alpha diversity in sarcoidosis was significantly lower in OW (p = 0.047) and PBAL (p = 0.03) compared with controls. The beta diversity for sarcoidosis compared with controls differed for both fungi and bacteria. AMP levels were significantly lower in sarcoidosis compared to controls (SLPI and hBD-1: p < 0.01). No significant correlations were found between alpha diversity and AMPs. CONCLUSIONS: The pulmonary fungal and bacterial microbiota in sarcoidosis differed from in controls. Lower antimicrobial peptides levels were seen in sarcoidosis, indicating an interaction between the microbiota and the innate immune system. Whether this dysbiosis represents a pathogenic mechanism in sarcoidosis needs to be confirmed in experimental studies. Video Abstract.
Asunto(s)
Microbiota , Sarcoidosis , beta-Defensinas , Humanos , Péptidos Antimicrobianos , Bacterias/genética , Líquido del Lavado Bronquioalveolar/microbiología , Disbiosis , Pulmón/microbiología , Microbiota/genética , Inhibidores de Proteasas , ARN Ribosómico 16S/genética , Sarcoidosis/microbiologíaRESUMEN
PURPOSE: This study aims to explore and characterize healthy eye microbiota. METHODS: Healthy subjects older than 18 years were selected for this descriptive cross-sectional study. Samples were collected with an eSwab with 1 mL of Liquid Amies Medium (Copan Brescia, Italy). Following DNA extraction, libraries preparation, and amplification, PCR products were purified and end-repaired for barcode ligation. Libraries were pooled to a final concentration of 26 pM. Template preparation was performed with Ion Chef according to Ion 510, Ion 520, and Ion 530 Kit-Chef protocol. Sequencing of the amplicon libraries was carried out on a 520 or 530 chip using the Ion Torrent S5 system (Thermo Fisher; Waltham, MA, USA). Raw reads were analyzed with GAIA (v 2.02). RESULTS: Healthy eye microbiota is a low-diversity microbiome. The vast majority of the 137 analyzed samples were highly enriched with Staphylococcus, whereas only in a few of them, other genera such as Bacillus, Pseudomonas, and Corynebacterium predominate. We found an average of 88 genera with an average Shannon index of 0.65. CONCLUSION: We identified nine different ECSTs. A better understanding of healthy eye microbiota has the potential to improve disease diagnosis and personalized regimens to promote health.
Asunto(s)
Promoción de la Salud , Microbiota , Estudios Transversales , ADN , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Microbiota/genética , ARN Ribosómico 16S/genéticaRESUMEN
BACKGROUND: Few studies have examined the stability of the pulmonary mycobiome. We report longitudinal changes in the oral and pulmonary mycobiome of participants with and without COPD in a large-scale bronchoscopy study (MicroCOPD). METHODS: Repeated sampling was performed in 30 participants with and 21 without COPD. We collected an oral wash (OW) and a bronchoalveolar lavage (BAL) sample from each participant at two time points. The internal transcribed spacer 1 region of the ribosomal RNA gene cluster was PCR amplified and sequenced on an Illumina HiSeq sequencer. Differences in taxonomy, alpha diversity, and beta diversity between the two time points were compared, and we examined the effect of intercurrent antibiotic use. RESULTS: Sample pairs were dominated by Candida. We observed less stability in the pulmonary taxonomy compared to the oral taxonomy, additionally emphasised by a higher Yue-Clayton measure in BAL compared to OW (0.69 vs 0.22). No apparent effect was visually seen on taxonomy from intercurrent antibiotic use or participant category. We found no systematic variation in alpha diversity by time either in BAL (p-value 0.16) or in OW (p-value 0.97), and no obvious clusters on bronchoscopy number in PCoA plots. Pairwise distance analyses showed that OW samples from repeated sampling appeared more stable compared to BAL samples using the Bray-Curtis distance metric (p-value 0.0012), but not for Jaccard. CONCLUSION: Results from the current study propose that the pulmonary mycobiome is less stable than the oral mycobiome, and neither COPD diagnosis nor intercurrent antibiotic use seemed to influence the stability.
Asunto(s)
Micobioma , Enfermedad Pulmonar Obstructiva Crónica , Antibacterianos , Líquido del Lavado Bronquioalveolar , Humanos , Estudios Longitudinales , PulmónRESUMEN
Engineered probiotics represent a cutting-edge therapy in intestinal inflammatory disease (IBD). Genetically modified bacteria have provided a new strategy to release therapeutically operative molecules in the intestine and have grown into promising new therapies for IBD. Current IBD treatments, such as corticosteroids and immunosuppressants, are associated with relevant side effects and a significant proportion of patients are dependent on these therapies, thus exposing them to the risk of relevant long-term side effects. Discovering new and effective therapeutic strategies is a worldwide goal in this research field and engineered probiotics could potentially provide a viable solution. This review aims at describing the proceeding of bacterial engineering and how genetically modified probiotics may represent a promising new biotechnological approach in IBD treatment.
Asunto(s)
Enfermedades Inflamatorias del Intestino , Probióticos , Bacterias , Enfermedad Crónica , Humanos , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/terapia , Intestinos/microbiología , Probióticos/uso terapéuticoRESUMEN
The Green Non-Coding Database (GreeNC) is one of the reference databases for the study of plant long non-coding RNAs (lncRNAs). Here we present our most recent update where 16 species have been updated, while 78 species have been added, resulting in the annotation of more than 495 000 lncRNAs. Moreover, sequence clustering was applied providing information about sequence conservation and gene families. The current version of the database is available at: http://greenc.sequentiabiotech.com/wiki2/Main_Page.
Asunto(s)
Bases de Datos de Ácidos Nucleicos , Genoma de Planta/genética , Plantas/clasificación , ARN Largo no Codificante/clasificación , Secuencia Conservada/genética , Humanos , Anotación de Secuencia Molecular , Plantas/genética , ARN Largo no Codificante/genética , ARN de Planta/clasificación , ARN de Planta/genéticaRESUMEN
The Plant Resistance Genes database (PRGdb; http://prgdb.org/prgdb4/) has been greatly expanded, keeping pace with the increasing amount of available knowledge and data (sequenced proteomes, cloned genes, public analysis data, etc.). The easy-to-use style of the database website has been maintained, while an updated prediction tool, more data and a new section have been added. This new section will contain plant resistance transcriptomic experiments, providing additional easy-to-access experimental information. DRAGO3, the tool for automatic annotation and prediction of plant resistance genes behind PRGdb, has been improved in both accuracy and sensitivity, leading to more reliable predictions. PRGdb offers 199 reference resistance genes and 586.652 putative resistance genes from 182 sequenced proteomes. Compared to the previous release, PRGdb 4.0 has increased the number of reference resistance genes from 153 to 199, the number of putative resistance genes from 177K from 76 proteomes to 586K from 182 sequenced proteomes. A new section has been created that collects plant-pathogen transcriptomic data for five species of agricultural interest. Thereby, with these improvements and data expansions, PRGdb 4.0 aims to serve as a reference to the plant scientific community and breeders worldwide, helping to further study plant resistance mechanisms that contribute to fighting pathogens.
Asunto(s)
Bases de Datos Genéticas , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Plantas/genética , Genoma de Planta/genética , Anotación de Secuencia Molecular , Enfermedades de las Plantas/clasificación , Plantas/clasificación , Transcriptoma/genéticaRESUMEN
BACKGROUND: Accurate copy number variant (CNV) detection is especially challenging for both targeted sequencing (TS) and whole-exome sequencing (WES) data. To maximize the performance, the parameters of the CNV calling algorithms should be optimized for each specific dataset. This requires obtaining validated CNV information using either multiplex ligation-dependent probe amplification (MLPA) or array comparative genomic hybridization (aCGH). They are gold standard but time-consuming and costly approaches. RESULTS: We present isoCNV which optimizes the parameters of DECoN algorithm using only NGS data. The parameter optimization process is performed using an in silico CNV validated dataset obtained from the overlapping calls of three algorithms: CNVkit, panelcn.MOPS and DECoN. We evaluated the performance of our tool and showed that increases the sensitivity in both TS and WES real datasets. CONCLUSIONS: isoCNV provides an easy-to-use pipeline to optimize DECoN that allows the detection of analysis-ready CNV from a set of DNA alignments obtained under the same conditions. It increases the sensitivity of DECoN without the need for orthogonal methods. isoCNV is available at https://gitlab.com/sequentiateampublic/isocnv .
Asunto(s)
Variaciones en el Número de Copia de ADN , Exoma , Algoritmos , Hibridación Genómica Comparativa , Simulación por Computador , Exoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Secuenciación del ExomaRESUMEN
Spinach (Spinacia oleracea L.) is a member of the Caryophyllales family, a basal eudicot asterid that consists of sugar beet (Beta vulgaris L. subsp. vulgaris), quinoa (Chenopodium quinoa Willd.), and amaranth (Amaranthus hypochondriacus L.). With the introduction of baby leaf types, spinach has become a staple food in many homes. Production issues focus on yield, nitrogen-use efficiency and resistance to downy mildew (Peronospora effusa). Although genomes are available for the above species, a chromosome-level assembly exists only for quinoa, allowing for proper annotation and structural analyses to enhance crop improvement. We independently assembled and annotated genomes of the cultivar Viroflay using short-read strategy (Illumina) and long-read strategies (Pacific Biosciences) to develop a chromosome-level, genetically anchored assembly for spinach. Scaffold N50 for the Illumina assembly was 389 kb, whereas that for Pacific BioSciences was 4.43 Mb, representing 911 Mb (93% of the genome) in 221 scaffolds, 80% of which are anchored and oriented on a sequence-based genetic map, also described within this work. The two assemblies were 99.5% collinear. Independent annotation of the two assemblies with the same comprehensive transcriptome dataset show that the quality of the assembly directly affects the annotation with significantly more genes predicted (26,862 vs. 34,877) in the long-read assembly. Analysis of resistance genes confirms a bias in resistant gene motifs more typical of monocots. Evolutionary analysis indicates that Spinacia is a paleohexaploid with a whole-genome triplication followed by extensive gene rearrangements identified in this work. Diversity analysis of 75 lines indicate that variation in genes is ample for hypothesis-driven, genomic-assisted breeding enabled by this work.
Asunto(s)
Peronospora , Spinacia oleracea , Cromosomas , Reordenamiento Génico , Fitomejoramiento , Spinacia oleracea/genéticaRESUMEN
Genetically engineered probiotics, able to in situ deliver therapeutically active compounds while restoring gut eubiosis, could represent an attractive therapeutic alternative in Clostridium difficile infection (CDI). Palmitoylethanolamide is an endogenous lipid able to exert immunomodulatory activities and restore epithelial barrier integrity in human models of colitis, by binding the peroxisome proliferator-activated receptor-α (PPARα). The aim of this study was to explore the efficacy of a newly designed PEA-producing probiotic (pNAPE-LP) in a mice model of C. difficile toxin A (TcdA)-induced colitis. The human N-acyl-phosphatidylethanolamine-specific phospholipase D (NAPE-PLD), a key enzyme involved in the synthesis of PEA, was cloned and expressed in a Lactobacillus paracasei that was intragastrically administered to mice 7 days prior the induction of the colitis. Bacteria carrying the empty vector served as negative controls (pLP).In the presence of palmitate, pNAPE-LP was able to significantly increase PEA production by 27,900%, in a time- and concentration-dependent fashion. Mice treated with pNAPE-LP showed a significant improvement of colitis in terms of histological damage score, macrophage count, and myeloperoxidase levels (-53, -82, and -70.4%, respectively). This was paralleled by a significant decrease both in the expression of toll-like receptor-4 (-71%), phospho-p38 mitogen-activated protein kinase (-72%), hypoxia-inducible factor-1-alpha (-53%), p50 (-74%), and p65 (-60%) and in the plasmatic levels of interleukin-6 (-86%), nitric oxide (-59%), and vascular endothelial growth factor (-71%). Finally, tight junction protein expression was significantly improved by pNAPE-LP treatment as witnessed by the rescue of zonula occludens-1 (+304%), Ras homolog family member A-GTP (+649%), and occludin expression (+160%). These protective effects were mediated by the specific release of PEA by the engineered probiotic as they were abolished in PPARα knockout mice and in wild-type mice treated with pLP. Herein, we demonstrated that pNAPE-LP has therapeutic potential in CDI by inhibiting colonic inflammation and restoring tight junction protein expression in mice, paving the way to next generation probiotics as a promising strategy in CDI prevention.
RESUMEN
The spatial folding of chromosomes inside the nucleus has regulatory effects on gene expression, yet the impact of genome reshuffling on this organization remains unclear. Here, we take advantage of chromosome conformation capture in combination with single-nucleotide polymorphism (SNP) genotyping and analysis of crossover events to study how the higher-order chromatin organization and recombination landscapes are affected by chromosomal fusions in the mammalian germ line. We demonstrate that chromosomal fusions alter the nuclear architecture during meiosis, including an increased rate of heterologous interactions in primary spermatocytes, and alterations in both chromosome synapsis and axis length. These disturbances in topology were associated with changes in genomic landscapes of recombination, resulting in detectable genomic footprints. Overall, we show that chromosomal fusions impact the dynamic genome topology of germ cells in two ways: (i) altering chromosomal nuclear occupancy and synapsis, and (ii) reshaping landscapes of recombination.
Asunto(s)
Cromatina/metabolismo , Cromosomas/metabolismo , Recombinación Genética , Espermatocitos/metabolismo , Animales , Evolución Biológica , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Cromatina/genética , Emparejamiento Cromosómico/genética , Segregación Cromosómica , Cromosomas/genética , Europa (Continente) , Fertilidad/genética , Técnicas de Genotipaje/métodos , Masculino , Ratones , Polimorfismo de Nucleótido Simple , Cultivo Primario de Células , Análisis de Semen , Espermatocitos/citologíaRESUMEN
BACKGROUND: The fungal part of the pulmonary microbiome (mycobiome) is understudied. We report the composition of the oral and pulmonary mycobiome in participants with COPD compared to controls in a large-scale single-centre bronchoscopy study (MicroCOPD). METHODS: Oral wash and bronchoalveolar lavage (BAL) was collected from 93 participants with COPD and 100 controls. Fungal DNA was extracted before sequencing of the internal transcribed spacer 1 (ITS1) region of the fungal ribosomal RNA gene cluster. Taxonomic barplots were generated, and we compared taxonomic composition, Shannon index, and beta diversity between study groups, and by use of inhaled steroids. RESULTS: The oral and pulmonary mycobiomes from controls and participants with COPD were dominated by Candida, and there were more Candida in oral samples compared to BAL for both study groups. Malassezia and Sarocladium were also frequently found in pulmonary samples. No consistent differences were found between study groups in terms of differential abundance/distribution. Alpha and beta diversity did not differ between study groups in pulmonary samples, but beta diversity varied with sample type. The mycobiomes did not seem to be affected by use of inhaled steroids. CONCLUSION: Oral and pulmonary samples differed in taxonomic composition and diversity, possibly indicating the existence of a pulmonary mycobiome.
Asunto(s)
Hongos , Pulmón/microbiología , Boca/microbiología , Micobioma/efectos de los fármacos , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Anciano , Estudios de Casos y Controles , ADN de Hongos/aislamiento & purificación , Femenino , Hongos/clasificación , Hongos/efectos de los fármacos , Hongos/aislamiento & purificación , Humanos , Masculino , Persona de Mediana Edad , Noruega/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/epidemiologíaRESUMEN
Palmitoylethanolamide (PEA) is an N-acylethanolamide produced on-demand by the enzyme N-acylphosphatidylethanolamine-preferring phospholipase D (NAPE-PLD). Being a key member of the larger family of bioactive autacoid local injury antagonist amides (ALIAmides), PEA significantly improves the clinical and histopathological stigmata in models of ulcerative colitis (UC). Despite its safety profile, high PEA doses are required in vivo to exert its therapeutic activity; therefore, PEA has been tested only in animals or human biopsy samples, to date. To overcome these limitations, we developed an NAPE-PLD-expressing Lactobacillus paracasei F19 (pNAPE-LP), able to produce PEA under the boost of ultra-low palmitate supply, and investigated its therapeutic potential in a murine model of UC. The coadministration of pNAPE-LP and palmitate led to a time-dependent release of PEA, resulting in a significant amelioration of the clinical and histological damage score, with a significantly reduced neutrophil infiltration, lower expression and release of pro-inflammatory cytokines and oxidative stress markers, and a markedly improved epithelial barrier integrity. We concluded that pNAPE-LP with ultra-low palmitate supply stands as a new method to increase the in situ intestinal delivery of PEA and as a new therapeutic able of controlling intestinal inflammation in inflammatory bowel disease.
Asunto(s)
Amidas/metabolismo , Colitis/tratamiento farmacológico , Etanolaminas/metabolismo , Inflamación/tratamiento farmacológico , Lacticaseibacillus paracasei/genética , Ácidos Palmíticos/metabolismo , Amidas/farmacología , Animales , Colitis/inducido químicamente , Colitis/genética , Colitis/patología , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Etanolaminas/farmacología , Humanos , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/patología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Lacticaseibacillus paracasei/metabolismo , Ingeniería Metabólica , Ratones , Infiltración Neutrófila/efectos de los fármacos , Ácidos Palmíticos/farmacologíaRESUMEN
At present, googling the search terms "COVID-19" and "Functional foods" yields nearly 500,000,000 hits, witnessing the growing interest of the scientific community and the general public in the role of nutrition and nutraceuticals during the COVID-19 pandemic. Many compounds have been proposed as phytotherapics in the prevention and/or treatment of COVID-19. The extensive interest of the general public and the enormous social media coverage on this topic urges the scientific community to address the question of whether which nutraceuticals can actually be employed in preventing and treating this newly described coronavirus-related disease. Recently, the Canadian biotech pharma company "FSD Pharma" received the green light from the Food and Drug Administration to design a proof-of-concept study evaluating the effects of ultramicronized palmitoylethanolamide (PEA) in COVID-19 patients. The story of PEA as a nutraceutical to prevent and treat infectious diseases dates back to the 1970s where the molecule was branded under the name Impulsin and was used for its immunomodulatory properties in influenza virus infection. The present paper aims at analyzing the potential of PEA as a nutraceutical and the previous evidence suggesting its anti-inflammatory and immunomodulatory properties in infectious and respiratory diseases and how these could translate to COVID-19 care.
RESUMEN
The genus Malassezia is part of the normal skin mycobiota of a wide range of warm-blooded animals. In this genus, M. cuniculi is the only species described from rabbits. However, Malassezia species are rarely studied in lagomorphs. In the present study, the presence of Malassezia was assessed in samples from the external ear canal of healthy rabbits of different breeds. Cytological and culture techniques, Sanger sequencing, and Next-generation sequencing (NGS) were used to describe the ear mycobiota in the samples. Although no growth was observed in the cultured plates, cytological examination revealed the presence of round cells similar to those of Malassezia yeasts. For metagenomics analysis, the D1/D2 domain of the large subunit of the ribosomal DNA (LSU rDNA) was PCR amplified and the resulting reads were mapped against a custom-made cured database of 26S fungal sequences. NGS analysis revealed that Basidiomycota was the most abundant phylum in all the samples followed by Ascomycota. Malassezia was the most common genus presenting the highest abundance in the external ear canal. Malassezia phylotype 131 and M. cuniculi were the main sequences detected in the external auditory canal of rabbits. The study included both lop-eared and erect-eared rabbits and no differences were observed in the results when comparing both groups. This is the first attempt to study the external ear canal mycobiome of rabbits of different breeds using NGS. LAY SUMMARY: In the present study, the presence of Malassezia was assessed in samples from the external ear canal of healthy rabbits of different breeds. Cytological and culture techniques, Sanger sequencing, and Next-generation sequencing (NGS) were used to describe the ear mycobiota in the samples.