Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Naunyn Schmiedebergs Arch Pharmacol ; 396(1): 161-166, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36308551

RESUMEN

Clozapine is an atypical neuroleptic used to manage treatment-resistant schizophrenia which is known to inhibit cardiac hERG/KV11.1 potassium channels, a pharmacological property associated with increased risk of potentially fatal Torsades de Pointes (TdP) and sudden cardiac death (SCD). Yet, the long-standing clinical practice of clozapine does not show a consistent association with increased incidence of TdP, although SCD is considerably higher among schizophrenic patients than in the general population. Here, we have established the inhibitory profile of clozapine at the seven cardiac ion currents proposed by the ongoing comprehensive in vitro pro-arrhythmia (CiPA) initiative to better predict new drug cardio-safety risk. We found that clozapine inhibited all CiPA currents tested with the following rank order of potency: KV11.1 > NaV1.5 (late current) ≈ CaV1.2 ≈ NaV1.5 (peak current) ≈ KV7.1 > KV4.3 > Kir2.1 (outward current). Half-maximal inhibitory concentrations (IC50) at the repolarizing KV11.1 and KV7.1 channels, and at the depolarizing CaV1.2 and NaV1.5 channels fell within a narrow half-log 3-10 µM concentration range, suggesting that mutual compensation could explain the satisfactory arrhythmogenic cardio-safety profile of clozapine. Although the IC50 values determined herein using an automated patch-clamp (APC) technique are at the higher end of clozapine plasmatic concentrations at target therapeutic doses, this effective antipsychotic appears prone to distribute preferentially into the cardiac tissue, which supports the clinical relevance of our in vitro pharmacological findings.


Asunto(s)
Antipsicóticos , Clozapina , Torsades de Pointes , Humanos , Antipsicóticos/farmacología , Clozapina/farmacología , Canales de Potasio Éter-A-Go-Go , Canales Iónicos , Torsades de Pointes/inducido químicamente , Arritmias Cardíacas , Proteínas de Unión al ADN , Canal de Potasio ERG1
2.
Naunyn Schmiedebergs Arch Pharmacol ; 395(6): 735-740, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35412073

RESUMEN

Drinking fresh grapefruit juice is associated with a significant prolongation of the QT segment on the electrocardiogram (ECG) in healthy volunteers. Among the prominent polyphenols contained in citrus fruits and primarily in grapefruit, the flavonoid naringenin is known to be a blocker of the human ether-a-go-go related gene (hERG) potassium channel. Here we hypothesized that naringenin could interfere with other major ion channels shaping the cardiac ventricular action potential (AP). To test this hypothesis, we examined the effects of naringenin on the seven channels comprising the Comprehensive in vitro Pro-Arrhythmia (CiPA) ion channel panel for early arrhythmogenic risk assessment in drug discovery and development. We used automated population patch-clamp of human ion channels heterologously expressed in mammalian cells to evaluate half-maximal inhibitory concentrations (IC50). Naringenin blocked all CiPA ion channels tested with IC50 values in the 30-100 µM concentration-range. The rank-order of channel sensitivity was the following: hERG > Kir2.1 > NaV1.5 (late current) > NaV1.5 (peak current) > KV7.1 > KV4.3 > CaV1.2. This multichannel inhibitory profile of naringenin suggests exercising caution when large amounts of grapefruit juice or other citrus juices enriched in this flavonoid polyphenol are drunk in conjunction with QT prolonging drugs or by carriers of congenital long-QT syndromes.


Asunto(s)
Citrus paradisi , Flavanonas , Animales , Arritmias Cardíacas , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/fisiología , Flavanonas/farmacología , Humanos , Canales Iónicos , Mamíferos , Técnicas de Placa-Clamp , Polifenoles/farmacología
3.
Eur J Pharmacol ; 886: 173542, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-32910945

RESUMEN

Cannabidiol (CBD) is a non-psychoactive component of Cannabis which has recently received regulatory consideration for the treatment of intractable forms of epilepsy such as the Dravet and the Lennox-Gastaut syndromes. The mechanisms of the antiepileptic effects of CBD are unclear, but several pre-clinical studies suggest the involvement of ion channels. Therefore, we have evaluated the effects of CBD on seven major cardiac currents shaping the human ventricular action potential and on Purkinje fibers isolated from rabbit hearts to assess the in vitro cardiac safety profile of CBD. We found that CBD inhibits with comparable micromolar potencies the peak and late components of the NaV1.5 sodium current, the CaV1.2 mediated L-type calcium current, as well as all the repolarizing potassium currents examined except Kir2.1. The most sensitive channels were KV7.1 and the least sensitive were KV11.1 (hERG), which underly the slow (IKs) and rapid (IKr) components, respectively, of the cardiac delayed-rectifier current. In the Purkinje fibers, CBD decreased the action potential (AP) duration more potently at half-maximal than at near complete repolarization, and slightly decreased the AP amplitude and its maximal upstroke velocity. CBD had no significant effects on the membrane resting potential except at the highest concentration tested under fast pacing rate. These data show that CBD impacts cardiac electrophysiology and suggest that caution should be exercised when prescribing CBD to carriers of cardiac channelopathies or in conjunction with other drugs known to affect heart rhythm or contractility.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Cannabidiol/farmacología , Ventrículos Cardíacos/efectos de los fármacos , Corazón/efectos de los fármacos , Canales Iónicos/efectos de los fármacos , Animales , Cannabidiol/toxicidad , Canalopatías/complicaciones , Humanos , Técnicas In Vitro , Canal de Potasio KCNQ1/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/efectos de los fármacos , Técnicas de Placa-Clamp , Ramos Subendocárdicos/efectos de los fármacos , Conejos
4.
Assay Drug Dev Technol ; 17(3): 89-99, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30835490

RESUMEN

Inwardly rectifying IK1 potassium currents of the heart control the resting membrane potential of ventricular cardiomyocytes during diastole and contribute to their repolarization after each action potential. Mutations in the gene encoding Kir2.1 channels, which primarily conduct ventricular IK1, are associated with inheritable forms of arrhythmias and sudden cardiac death. Therefore, potential iatrogenic inhibition of Kir2.1-mediated IK1 currents is a cardiosafety concern during new drug discovery and development. Kir2.1 channels are part of the panel of cardiac ion channels currently considered for refined early compound risk assessment within the Comprehensive in vitro Proarrhythmia Assay initiative. In this study, we have validated a cell-based assay allowing functional quantification of Kir2.1 inhibitors using whole-cell recordings of Chinese hamster ovary cells stably expressing human Kir2.1 channels. We reproduced key electrophysiological and pharmacological features known for native IK1, including current enhancement by external potassium and voltage- and concentration-dependent blockade by external barium. Furthermore, the Kir inhibitors ML133, PA-6, and chloroquine, as well as the multichannel inhibitors chloroethylclonidine, chlorpromazine, SKF-96365, and the class III antiarrhythmic agent terikalant demonstrated slowly developing inhibitory activity in the low micromolar range. The robustness of this assay authorizes medium throughput screening for cardiosafety purposes and could help to enrich the currently limited Kir2.1 pharmacology.


Asunto(s)
Automatización , Cloroquina/farmacología , Imidazoles/farmacología , Pentamidina/farmacología , Fenantrolinas/farmacología , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Animales , Células CHO , Cloroquina/química , Cricetulus , Relación Dosis-Respuesta a Droga , Fenómenos Electrofisiológicos , Humanos , Imidazoles/química , Estructura Molecular , Pentamidina/análogos & derivados , Pentamidina/química , Fenantrolinas/química , Canales de Potasio de Rectificación Interna/metabolismo
5.
Methods Mol Biol ; 1641: 187-199, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28748465

RESUMEN

The human Ether-a-go-go Related Gene (hERG) product has been identified as a central ion channel underlying both familial forms of elongated QT interval on the electrocardiogram and drug-induced elongation of the same QT segment. Indeed, reduced function of this potassium channel involved in the repolarization of the cardiac action potential can produce a type of life-threatening cardiac ventricular arrhythmias called Torsades de Pointes (TdP). Therefore, hERG inhibitory activity of newly synthetized molecules is a relevant structure-activity metric for compound prioritization and optimization in medicinal chemistry phases of drug discovery. Electrophysiology remains the gold standard for the functional assessment of ion channel pharmacology. The recent years have witnessed automatization and parallelization of the manual patch-clamp technique, allowing higher throughput screening on recombinant hERG channels. However, the multi-well plate format of automatized patch-clamp does not allow visual detection of potential micro-precipitation of poorly soluble compounds. In this chapter we describe bench procedures for the culture and preparation of hERG-expressing CHO cells for recording on an automated patch-clamp workstation. We also show that the sensitivity of the assay can be improved by adding a surfactant to the extracellular medium.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/metabolismo , Técnicas de Placa-Clamp/métodos , Potenciales de Acción/fisiología , Animales , Células CHO , Cricetinae , Cricetulus , Electrofisiología , Humanos , Unión Proteica , Relación Estructura-Actividad Cuantitativa , Torsades de Pointes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA