Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Combust Flame ; 214: 65-79, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32189720

RESUMEN

Particulate matter coming from the combustion of renewable diesel (RD), ultra-low sulfur diesel (ULSD) and a volumetric blend of 30% of RD with ULSD (RD30) were collected and physico-chemically characterized. Soot samples were generated in two flame burner types (non-premixed flame, NPF, and partially premixed flame, PPF) trying to simulate the diffusion and premix regimes found in diesel engines. The impact of both fuel nature and burner type was assessed on soot mass, particle size and morphology, particle nanostructure and surface functional groups. In general, although the results of HRTEM and SMPS suggested that the addition of RD reduced the average particle size and increased the concentration of ultra-fine particles, the mass emission of soot was drastically mitigated regardless of the burner used. The results also suggest that the changes in the chemical characteristics of the soot were slightly more sensitive than the changes in the internal nanostructure of the particles, since the graphitic character (as showed by Raman and infrared analysis) increased as the RD content increased, being stronger for the PPF system. Comparisons between engine soot and flame soot confirmed that the addition of RD into ULSD produced smaller and more carbonized particles. In fact, some engine results were located in between those obtained in PPF and NPF burners, suggesting that both combustion regimes are contributing to soot characteristics in engines. This consistency suggests that a first assessment of the impact of alternative fuels on the characteristics of particulate matter can be conducted through the basic approach offered by laboratory flames, thereby avoiding the costs associated with generating large quantities of fuel and the complexities of in-cylinder physical interactions and engine parameters.

2.
Water Res ; 94: 1-9, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26921708

RESUMEN

This study focuses on the photo-transformation, in presence of humic substances (HSs), of ciprofloxacin (CIP), a commonly-used fluoroquinolone antibiotic whose presence in aquatic ecosystems is a health hazard for humans and other living organisms. HSs from the International Humic Substances Society (Elliott humic acid and fulvic acid, Pahokee peat humic acid and Nordic lake) and a humic acid extracted from modified coal (HACM) were tested for their ability to photodegrade CIP. Based on kinetic and analytical studies, it was possible to establish an accelerating effect on the rate of CIP decomposition caused by the humic substances. This effect was associated with the photosensitized capacity of the HSs to facilitate energy transfer from an excited humic state to the ground state of ciprofloxacin. Except for Nordic lake, which experienced a lower positive effect, no significant differences in the CIP transformation were found among the different humic acids examined. The photochemistry of CIP can be modified by parameters such as pH, CIP or oxygen concentration. The irradiation of this antibiotic in the presence of HACM showed that antimicrobial activity was negligible after 14 h for E. coli and 24 h for S. aureus. In contrast, the antimicrobial activity was only slightly decreased after 24 h of irradiation by direct photolysis. Although mineralization of CIP irradiation in the presence of a HACM solution was not achieved, biodegradability was achieved after 12 h of irradiation, indicating that microorganisms within the environment can easily degrade CIP photochemical by-products.


Asunto(s)
Antibacterianos/química , Ciprofloxacina/química , Sustancias Húmicas , Fotólisis , Contaminantes Químicos del Agua/química , Benzopiranos/química , Biodegradación Ambiental , Análisis de la Demanda Biológica de Oxígeno , Escherichia coli/efectos de los fármacos , Concentración de Iones de Hidrógeno , Cinética , Estructura Molecular , Staphylococcus aureus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...