Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nature ; 626(7998): 377-384, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38109938

RESUMEN

Many of the Earth's microbes remain uncultured and understudied, limiting our understanding of the functional and evolutionary aspects of their genetic material, which remain largely overlooked in most metagenomic studies1. Here we analysed 149,842 environmental genomes from multiple habitats2-6 and compiled a curated catalogue of 404,085 functionally and evolutionarily significant novel (FESNov) gene families exclusive to uncultivated prokaryotic taxa. All FESNov families span multiple species, exhibit strong signals of purifying selection and qualify as new orthologous groups, thus nearly tripling the number of bacterial and archaeal gene families described to date. The FESNov catalogue is enriched in clade-specific traits, including 1,034 novel families that can distinguish entire uncultivated phyla, classes and orders, probably representing synapomorphies that facilitated their evolutionary divergence. Using genomic context analysis and structural alignments we predicted functional associations for 32.4% of FESNov families, including 4,349 high-confidence associations with important biological processes. These predictions provide a valuable hypothesis-driven framework that we used for experimental validatation of a new gene family involved in cell motility and a novel set of antimicrobial peptides. We also demonstrate that the relative abundance profiles of novel families can discriminate between environments and clinical conditions, leading to the discovery of potentially new biomarkers associated with colorectal cancer. We expect this work to enhance future metagenomics studies and expand our knowledge of the genetic repertory of uncultivated organisms.


Asunto(s)
Archaea , Bacterias , Ecosistema , Evolución Molecular , Genes Arqueales , Genes Bacterianos , Genómica , Conocimiento , Péptidos Antimicrobianos/genética , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Biomarcadores , Movimiento Celular/genética , Neoplasias Colorrectales/genética , Genómica/métodos , Genómica/tendencias , Metagenómica/tendencias , Familia de Multigenes , Filogenia , Reproducibilidad de los Resultados
2.
Phytopathology ; 113(3): 390-399, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36399025

RESUMEN

Nitrate metabolism plays an important role in bacterial physiology. During the interaction of plant-pathogenic bacteria with their hosts, bacteria face variable conditions with respect to nitrate availability. Perception mechanisms through the chemosensory pathway drive the entry and control the colonization of the plant host in phytopathogenic bacteria. In this work, the identification and characterization of the nitrate- and nitrite-sensing (NIT) domain-containing chemoreceptor of Dickeya dadantii 3937 (Dd3937) allowed us to unveil the key role of nitrate sensing not only for the entry into the plant apoplast through wounds but also for infection success. We determined the specificity of this chemoreceptor to bind nitrate and nitrite, with a slight ligand preference for nitrate. Gene expression analysis showed that nitrate perception controls not only the expression of nitrate reductase genes involved in respiratory and assimilatory metabolic processes but also the expression of gyrA, hrpN, and bgxA, three well-known virulence determinants in Dd3937.


Asunto(s)
Nitratos , Solanum tuberosum , Virulencia/genética , Nitratos/metabolismo , Solanum tuberosum/microbiología , Nitritos/metabolismo , Enfermedades de las Plantas/microbiología , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Plantas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
3.
Microb Biotechnol ; 15(10): 2652-2666, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35986900

RESUMEN

The extracellular 373-kDa PehA heme peroxidase of Pseudomonas putida KT2440 has two enzymatic domains which depend on heme cofactor for their peroxidase activity. A null pehA mutant was generated to examine the impact of PehA in rhizosphere colonization competence and the induction of plant systemic resistance (ISR). This mutant was not markedly hampered in colonization efficiency. However, increase in pehA dosage enhanced colonization fitness about 30 fold in the root and 900 fold in the root apex. In vitro assays with purified His-tagged enzymatic domains of PehA indicated that heme-dependent peroxidase activity was required for the enhancement of root tip colonization. Evaluation of live/dead cells confirmed that overexpression of pehA had a positive effect on bacterial cell viability. Following root colonization of rice plants by KT2440 strain, the incidence of rice blast caused by Magnaporthe oryzae was reduced by 65% and the severity of this disease was also diminished in comparison to non-treated plants. An increase in the pehA dosage was also beneficial for the control of rice blast as compared with gene inactivation. The results suggest that PehA helps P. putida to cope with the plant-imposed oxidative stress leading to enhanced colonization ability and concomitant ISR-elicitation.


Asunto(s)
Pseudomonas putida , Antioxidantes , Hemo , Peroxidasas , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Raíces de Plantas/microbiología , Pseudomonas putida/genética
4.
Mol Plant Pathol ; 23(10): 1433-1445, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35689388

RESUMEN

Foliar bacterial pathogens have to penetrate the plant tissue and access the interior of the apoplast in order to initiate the pathogenic phase. The entry process is driven by chemotaxis towards plant-derived compounds in order to locate plant openings. However, information on plant signals recognized by bacterial chemoreceptors is scarce. Here, we show that the perception of GABA and l-Pro, two abundant components of the tomato apoplast, through the PsPto-PscC chemoreceptor drives the entry of Pseudomonas syringae pv. tomato into the tomato apoplast. The recognition of both compounds by PsPto-PscC caused chemoattraction to both amino acids and participated in the regulation of GABA catabolism. Mutation of the PsPto-PscC chemoreceptor caused a reduced chemotactic response towards these compounds which in turn impaired entry and reduced virulence in tomato plants. Interestingly, GABA and l-Pro levels significantly increase in tomato plants upon pathogen infection and are involved in the regulation of the plant defence response. This is an example illustrating how bacteria respond to plant signals produced during the interaction as cues to access the plant apoplast and to ensure efficient infection.


Asunto(s)
Pseudomonas syringae , Solanum lycopersicum , Proteínas Bacterianas/metabolismo , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/microbiología , Plantas/metabolismo , Ácido gamma-Aminobutírico/metabolismo
5.
mSystems ; 6(5): e0095121, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34546073

RESUMEN

Chemosensory pathways are among the most abundant prokaryotic signal transduction systems, allowing bacteria to sense and respond to environmental stimuli. Signaling is typically initiated by the binding of specific molecules to the ligand binding domain (LBD) of chemoreceptor proteins (CRs). Although CRs play a central role in plant-microbiome interactions such as colonization and infection, little is known about their phylogenetic and ecological specificity. Here, we analyzed 82,277 CR sequences from 11,806 representative microbial species covering the whole prokaryotic phylogeny, and we classified them according to their LBD type using a de novo homology clustering method. Through phylogenomic analysis, we identified hundreds of LBDs that are found predominantly in plant-associated bacteria, including several LBDs specific to phytopathogens and plant symbionts. Functional annotation of our catalogue showed that many of the LBD clusters identified might constitute unknown types of LBDs. Moreover, we found that the taxonomic distribution of most LBD types that are specific to plant-associated bacteria is only partially explained by phylogeny, suggesting that lifestyle and niche adaptation are important factors in their selection. Finally, our results show that the profile of LBD types in a given genome is related to the lifestyle specialization, with plant symbionts and phytopathogens showing the highest number of niche-specific LBDs. The LBD catalogue and information on how to profile novel genomes are available at https://github.com/compgenomicslab/CRs. IMPORTANCE Considering the enormous variety of LBDs at sensor proteins, an important question resides in establishing the forces that have driven their evolution and selection. We present here the first clear demonstration that environmental factors play an important role in the selection and evolution of LBDs. We were able to demonstrate the existence of LBD families that are highly enriched in plant-associated bacteria but show a wide phylogenetic spread. These findings offer a number of research opportunities in the field of single transduction, such as the exploration of similar relationships in chemoreceptors of bacteria with a different lifestyle, like those inhabiting or infecting the human intestine. Similarly, our results raise the question whether similar LBD types might be shared by members of different sensor protein families. Lastly, we provide a comprehensive catalogue of CRs classified by their LBD region that includes a large number of putative new LBD types.

6.
Mol Plant Pathol ; 21(12): 1606-1619, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33029921

RESUMEN

Adaptation and efficient colonization of the phyllosphere are essential processes for the switch to an epiphytic stage in foliar bacterial pathogens. Here, we explore the interplay among light perception and global transcriptomic alterations in epiphytic populations of the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000 (PsPto) following contact with tomato leaves. We found that blue-light perception by PsPto on leaf surfaces is required for optimal colonization. Blue light triggers the activation of metabolic activity and increases the transcript levels of five chemoreceptors through the function of light oxygen voltage and BphP1 photoreceptors. The inactivation of PSPTO_1008 and PSPTO_2526 chemoreceptors causes a reduction in virulence. Our results indicate that during PsPto interaction with tomato plants, light perception, chemotaxis, and virulence are highly interwoven processes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fotorreceptores Microbianos/metabolismo , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/efectos de la radiación , Solanum lycopersicum/microbiología , Transcriptoma/efectos de la radiación , Proteínas Bacterianas/genética , Quimiotaxis/efectos de la radiación , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Luz , Fotorreceptores Microbianos/genética , Hojas de la Planta/microbiología , Hojas de la Planta/efectos de la radiación , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidad , Pseudomonas syringae/fisiología , Virulencia/efectos de la radiación
7.
mBio ; 10(5)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31575767

RESUMEN

Chemotaxis has been associated with the pathogenicity of bacteria in plants and was found to facilitate bacterial entry through stomata and wounds. However, knowledge regarding the plant signals involved in this process is scarce. We have addressed this issue using Pseudomonas syringae pv. tomato, which is a foliar pathogen that causes bacterial speck in tomato. We show that the chemoreceptor P. syringae pv. tomato PscA (PsPto-PscA) recognizes specifically and with high affinity l-Asp, l-Glu, and d-Asp. The mutation of the chemoreceptor gene largely reduced chemotaxis to these ligands but also altered cyclic di-GMP (c-di-GMP) levels, biofilm formation, and motility, pointing to cross talk between different chemosensory pathways. Furthermore, the PsPto-PscA mutant strain showed reduced virulence in tomato. Asp and Glu are the most abundant amino acids in plants and in particular in tomato apoplasts, and we hypothesize that this receptor may have evolved to specifically recognize these compounds to facilitate bacterial entry into the plant. Infection assays with the wild-type strain showed that the presence of saturating concentrations of d-Asp also reduced bacterial virulence.IMPORTANCE There is substantive evidence that chemotaxis is a key requisite for efficient pathogenesis in plant pathogens. However, information regarding particular bacterial chemoreceptors and the specific plant signal that they sense is scarce. Our work shows that the phytopathogenic bacterium Pseudomonas syringae pv. tomato mediates not only chemotaxis but also the control of pathogenicity through the perception of the plant abundant amino acids Asp and Glu. We describe the specificity of the perception of l- and d-Asp and l-Glu by the PsPto-PscA chemoreceptor and the involvement of this perception in the regulation of pathogenicity-related traits. Moreover, a saturating concentration of d-Asp reduces bacterial virulence, and we therefore propose that ligand-mediated interference of key chemoreceptors may be an alternative strategy to control virulence.


Asunto(s)
Ácido Aspártico/metabolismo , Ácido Glutámico/metabolismo , Pseudomonas syringae/metabolismo , Pseudomonas syringae/patogenicidad , Solanum lycopersicum/microbiología , Biopelículas , Quimiotaxis/genética , Genes de Plantas , Guanosina Monofosfato/metabolismo , Ligandos , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/genética , Virulencia/genética
8.
PLoS One ; 14(6): e0218815, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31237890

RESUMEN

Multidrug resistance efflux pumps protect bacterial cells against a wide spectrum of antimicrobial compounds. PSPTO_0820 is a predicted multidrug transporter from the phytopathogenic bacterium Pseudomonas syringae pv. tomato DC3000. Orthologs of this protein are conserved within many Pseudomonas species that interact with plants. To study the potential role of PSPTO_0820 in plant-bacteria interaction, a mutant in this gene was isolated and characterized. In addition, with the aim to find the outer membrane channel for this efflux system, a mutant in PSPTO_4977, a TolC-like gene, was also analyzed. Both mutants were more susceptible to trans-cinnamic and chlorogenic acids and to the flavonoid (+)-catechin, when added to the culture medium. The expression level of both genes increased in the presence of (+)-catechin and, in the case of PSPTO_0820, also in response to trans-cinnamic acid. PSPTO_0820 and PSPTO_4977 mutants were unable to colonize tomato at high population levels. This work evidences the involvement of these two proteins in the resistance to plant antimicrobials, supporting also the importance of chlorogenic acid, trans-cinnamic acid, and (+)-catechin in the tomato plant defense response against P. syringae pv. tomato DC3000 infection.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/metabolismo , Pseudomonas syringae/patogenicidad , Solanum lycopersicum/microbiología , Antiinfecciosos/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Genes Bacterianos , Interacciones Microbiota-Huesped/genética , Solanum lycopersicum/metabolismo , Mutación , Proteínas de Plantas/metabolismo , Virulencia/genética
9.
Environ Microbiol ; 20(12): 4261-4280, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30058114

RESUMEN

Light is pervasive in the leaf environment, creating opportunities for both plants and pathogens to cue into light as a signal to regulate plant-microbe interactions. Light enhances plant defences and regulates opening of stomata, an entry point for foliar bacterial pathogens such as Pseudomonas syringae pv. tomato DC3000 (PsPto). The effect of light perception on gene expression and virulence was investigated in PsPto. Light induced genetic reprogramming in PsPto that entailed significant changes in stress tolerance and virulence. Blue light-mediated up-regulation of type three secretion system genes and red light-mediated down-regulation of coronatine biosynthesis genes. Cells exposed to white light, blue light or darkness before inoculation were more virulent when inoculated at dawn than dusk probably due to an enhanced entry through open stomata. Exposure to red light repressed coronatine biosynthesis genes which could lead to a reduced stomatal re-opening and PsPto entry. Photoreceptor were required for the greater virulence of light-treated and dark-treated PsPto inoculated at dawn as compared to dusk, indicating that these proteins sense the absence of light and contribute to priming of virulence in the dark. These results support a model in which PsPto exploits light changes to maximize survival, entry and virulence on plants.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Hojas de la Planta/microbiología , Pseudomonas syringae/fisiología , Pseudomonas syringae/efectos de la radiación , Solanum lycopersicum/microbiología , Aminoácidos/genética , Aminoácidos/metabolismo , Proteínas Bacterianas/metabolismo , Indenos/metabolismo , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidad , Factor sigma/metabolismo , Activación Transcripcional , Sistemas de Secreción Tipo III/genética , Virulencia/genética
10.
PLoS One ; 7(7): e40698, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22808235

RESUMEN

Proteins of the animal heme peroxidase (ANP) superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20), where it was found to be involved in Ca(2+) coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33-79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca(2+) binding with a K(D) of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821) is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of life.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas de Unión al Calcio/metabolismo , Mutagénesis Insercional/genética , Peroxidasa/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/metabolismo , Calcio/metabolismo , Proteínas de Unión al Calcio/química , Calorimetría , Secuencia de Consenso , Bases de Datos de Proteínas , Iones , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Filogenia , Estructura Terciaria de Proteína , Alineación de Secuencia , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA