Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(4)2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36831668

RESUMEN

Current cancer research is limited by the availability of reliable in vivo and in vitro models that are able to reproduce the fundamental hallmarks of cancer. Animal experimentation is of paramount importance in the progress of research, but it is becoming more evident that it has several limitations due to the numerous differences between animal tissues and real, in vivo human tissues. 3D bioprinting techniques have become an attractive tool for many basic and applied research fields. Concerning cancer, this technology has enabled the development of three-dimensional in vitro tumor models that recreate the characteristics of real tissues and look extremely promising for studying cancer cell biology. As 3D bioprinting is a relatively recently developed technique, there is still a lack of characterization of the chemical cellular microenvironment of 3D bioprinted constructs. In this work, we fabricated a cervical tumor model obtained by 3D bioprinting of HeLa cells in an alginate-based matrix. Characterization of the spheroid population obtained as a function of culturing time was performed by phase-contrast and confocal fluorescence microscopies. Scanning electrochemical microscopy and platinum nanoelectrodes were employed to characterize oxygen concentrations-a fundamental characteristic of the cellular microenvironment-with a high spatial resolution within the 3D bioprinted cervical tumor model; we also demonstrated that the diffusion of a molecular model of drugs in the 3D bioprinted construct, in which the spheroids were embedded, could be measured quantitatively over time using scanning electrochemical microscopy.

2.
Ther Adv Med Oncol ; 14: 17588359221079123, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281350

RESUMEN

Human Epidermal growth factor Receptor 2 (HER2) overexpression or HER2 gene amplification defines a subset of breast cancers (BCs) characterized by higher biological and clinical aggressiveness. The introduction of anti-HER2 drugs has remarkably improved clinical outcomes in patients with both early-stage and advanced HER2+ BC. However, some HER2+ BC patients still have unfavorable outcomes despite optimal anti-HER2 therapies. Retrospective clinical analyses indicate that overweight and obesity can negatively affect the prognosis of patients with early-stage HER2+ BC. This association could be mediated by the interplay between overweight/obesity, alterations in systemic glucose and lipid metabolism, increased systemic inflammatory status, and the stimulation of proliferation pathways resulting in the stimulation of HER2+ BC cell growth and resistance to anti-HER2 therapies. By contrast, in the context of advanced disease, a few high-quality studies, which were included in a meta-analysis, showed an association between high body mass index (BMI) and better clinical outcomes, possibly reflecting the negative prognostic role of malnourishment and cachexia in this setting. Of note, overweight and obesity are modifiable factors. Therefore, uncovering their prognostic role in patients with early-stage or advanced HER2+ BC could have clinical relevance in terms of defining subsets of patients requiring more or less aggressive pharmacological treatments, as well as of designing clinical trials to investigate the therapeutic impact of lifestyle interventions aimed at modifying body weight and composition. In this review, we summarize and discuss the available preclinical evidence supporting the role of adiposity in modulating HER2+ BC aggressiveness and resistance to therapies, as well as clinical studies reporting on the prognostic role of BMI in patients with early-stage or advanced HER2+ BC.

3.
Cancer Lett ; 511: 77-87, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-33961924

RESUMEN

De novo or acquired resistance of cancer cells to currently available Human Epidermal Growth Factor Receptor 2 (HER2) inhibitors represents a clinical challenge. Several resistance mechanisms have been identified in recent years, with lipid metabolism reprogramming, a well-established hallmark of cancer, representing the last frontier of preclinical and clinical research in this field. Fatty Acid Synthase (FASN), the key enzyme required for fatty acids (FAs) biosynthesis, is frequently overexpressed/activated in HER2-positive (HER2+) breast cancer (BC), and it crucially sustains HER2+ BC cell growth, proliferation and survival. After the synthesis of new, selective and well tolerated FASN inhibitors, clinical trials have been initiated to test if these compounds are able to re-sensitize cancer cells with acquired resistance to HER2 inhibition. More recently, the upregulation of FA uptake by cancer cells has emerged as a potentially new and targetable mechanism of resistance to anti-HER2 therapies in HER2+ BC, thus opening a new era in the field of targeting metabolic reprogramming in clinical setting. Here, we review the available preclinical and clinical evidence supporting the inhibition of FA biosynthesis and uptake in combination with anti-HER2 therapies in patients with HER2+ BC, and we discuss ongoing clinical trials that are investigating these combination approaches.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Metabolismo de los Lípidos/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptor ErbB-2/metabolismo , Neoplasias de la Mama/patología , Femenino , Humanos , Inhibidores de Proteínas Quinasas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA