Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 11: 1245747, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38481391

RESUMEN

Background: Intra-amniotic inflammation (IAI) is associated with increased risk of preterm birth and bronchopulmonary dysplasia (BPD), but the mechanisms by which IAI leads to preterm birth and BPD are poorly understood, and there are no effective therapies for preterm birth and BPD. The transcription factor c-Myc regulates various biological processes like cell growth, apoptosis, and inflammation. We hypothesized that c-Myc modulates inflammation at the maternal-fetal interface, and neonatal lung remodeling. The objectives of our study were 1) to determine the kinetics of c-Myc in the placenta, fetal membranes and neonatal lungs exposed to IAI, and 2) to determine the role of c-Myc in modulating inflammation at the maternal-fetal interface, and neonatal lung remodeling induced by IAI. Methods: Pregnant Sprague-Dawley rats were randomized into three groups: 1) Intra-amniotic saline injections only (control), 2) Intra-amniotic lipopolysaccharide (LPS) injections only, and 3) Intra-amniotic LPS injections with c-Myc inhibitor 10058-F4. c-Myc expression, markers of inflammation, angiogenesis, immunohistochemistry, and transcriptomic analyses were performed on placenta and fetal membranes, and neonatal lungs to determine kinetics of c-Myc expression in response to IAI, and effects of prenatal systemic c-Myc inhibition on lung remodeling at postnatal day 14. Results: c-Myc was upregulated in the placenta, fetal membranes, and neonatal lungs exposed to IAI. IAI caused neutrophil infiltration and neutrophil extracellular trap (NET) formation in the placenta and fetal membranes, and neonatal lung remodeling with pulmonary hypertension consistent with a BPD phenotype. Prenatal inhibition of c-Myc with 10058-F4 in IAI decreased neutrophil infiltration and NET formation, and improved neonatal lung remodeling induced by LPS, with improved alveolarization, increased angiogenesis, and decreased pulmonary vascular remodeling. Discussion: In a rat model of IAI, c-Myc regulates neutrophil recruitment and NET formation in the placenta and fetal membranes. c-Myc also participates in neonatal lung remodeling induced by IAI. Further studies are needed to investigate c-Myc as a potential therapeutic target for IAI and IAI-associated BPD.

2.
J Proteomics ; 151: 243-250, 2017 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-27318178

RESUMEN

Heparin is a sulfated polysaccharide of animal origin showing excellent anticoagulant properties. Although it strongly inhibits the coagulation cascade, its interaction with multiple sites results in several side effects. An ideal alternative compound should not only possess anticoagulant and antithrombotic activities, but also provide specific binding to components of the coagulation cascade to decrease side effects and facilitate the control of pharmacologic actions in patient's body. In this work, we performed a scan of potential targets for chemically sulfated pectin from Citrus sinensis (SCP) that shows an efficient anticoagulant activity by combining proteomics and molecular docking techniques. Defining the interaction partners of SCP is fundamental to evaluate if its pharmacological side effects can be as harmful as those from heparin. SCP interacts directly with heparin cofactor II, probably favoring its interaction with thrombin. SCP interaction with antithrombin depends likely on its association with thrombin or factor Xa. In addition to the interaction with factors related to homeostasis, SCP may also act on the renin-angiotensin and on the complement systems. BIOLOGICAL SIGNIFICANCE: The knowledge of potential molecular targets of SCP provides clues to understand its mechanism of action in order to guide molecular changes in this compound to increase its specificity.


Asunto(s)
Anticoagulantes/química , Citrus sinensis/química , Pectinas/química , Antitrombinas/metabolismo , Cofactor II de Heparina/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Pectinas/metabolismo , Pectinas/uso terapéutico , Unión Proteica , Proteómica , Sulfatos/química , Trombina/química , Trombina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...