Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(48): 45787-45800, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38075818

RESUMEN

The development of eco-friendly chemicals and material-based electrode systems with a reduced carbon footprint is a novel initiative for future technological applications. While electrochemical systems based on plant phytochemicals meet the requirements, comprehending the fundamental electron-transfer reactions and preparing stable surface-confined redox systems pose significant research challenges. In this study, we have demonstrated an in situ electrochemical reaction-assisted entrapment of redox-active betanin molecular species from native beetroot plants on a carbon black-modified glassy carbon surface (GCE/CB@Betn-Redox, where Betn-Redox stands for redox-active betanin molecular species) in a pH 2.2 KCl-HCl solution. In general, direct access to native plant phytochemicals is a formidable task due to the matrix effect. Isolating the desired phytochemicals necessitates a series of time-consuming chemical separation steps. Unlike previous literature reports on the unstable nature of Betn, GCE/CB@Betn-Redox exhibited a stable and well-defined proton-coupled electron-transfer peak at an apparent electrode potential, Eo' = 0.4 V vs Ag/AgCl, with a surface-excess value of 17.02 × 10-9 mol cm-2. Using several physicochemical techniques (transmission electron microscopy (TEM), Fourier-transform infrared (FTIR), and Raman), molecular techniques (UPLC), and electrochemical methods (in situ electrochemical quartz crystal microbalance (EQCM) and scanning electrochemical microscopy (SECM)), we have demonstrated the biomimicking electron-transfer functionality of CB@Betn-Redox. The unique feature of CB@Betn-Redox is its nonmediated effect on common biochemicals. This advantage makes it an interesting option for use as a selective pH sensor system without the complications of voltage drift that occur with the mediated oxidation/reduction functionality. We have successfully demonstrated highly selective and stable voltammetric and potentiometric pH sensor applications with practical real samples.

2.
Sci Rep ; 13(1): 22499, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38110542

RESUMEN

Nanobiotechnology is a unique class of multiphase and recently become a branch of contemporary science and a paradigm shift in material research. One of the two main problems facing the field of nanomaterial synthesis is the discovery of new natural resources for the biological production of metal nanoparticles and the absence of knowledge about the chemical composition of bio-source required for synthesis and the chemical process or mechanism behind the production of metal nanoparticles presents the second difficulty. We reported template-free green synthesized copper oxide nanoparticles using Tribulus terrestris seed natural extract without any isolation process. XRD, TEM, SEM, UV-Vis, DLS, zeta potential, and BET evaluated the synthesized metal nanoparticle. The TEM analysis confirmed that the CuO NPs are well dispersed and almost round in shape with an average size of 58 nm. EDAX confirms that copper is the prominent metal present in the nanomaterial. The greener fabricated copper oxide nanoparticle was employed to degrade methyl orange dye, almost 84% of methyl orange was degraded within 120 min. The outcomes demonstrated the nanomaterial's effective breakdown of contaminants, highlighting their potential for environmental rehabilitation. The electrochemical investigation of the CuO NPs was utilized for supercapacitor application. An appreciable value of specific capacitance is 369 F/g specific capacitances with 96.4% capacitance retention after 6000 cycles. Overall, the results of the current study show that the biologically produced copper oxide nanoparticles have intriguing uses as photocatalysts for treating water contaminants and are suitable for energy storage devices.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Tribulus , Cobre/química , Nanopartículas del Metal/química , Óxidos , Semillas , Extractos Vegetales/química , Espectroscopía Infrarroja por Transformada de Fourier
3.
J Photochem Photobiol B ; 173: 61-83, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28564631

RESUMEN

The challenges of medicine today include the increasing stipulation for sensitive and effective systems that can improve the pathological responses with a simultaneous reduction in accumulation and drug side effects. The demand can be fulfilled through the advancements in nanomedicine that includes nanostructures and nanodevices for diagnosing, treating, and prevention of various diseases. In this respect, the nanoscience provides various novel techniques with carriers such as micelles, dendrimers, particles and vesicles for the transportation of active moieties. Further, an efficient way to improve these systems is through stimuli a responsive system that utilizes supramolecular hyperbranched structures to meet the above criteria. The stimuli-responsive dendritic architectures exhibit spatial, temporal, convenient, effective, safety and controlled drug release in response to specific trigger through electrostatic interactions plus π stacking. The stimuli-responsive systems are capable of sequestering the drug molecules underneath a predefined set of conditions and discharge them in a different environment through either exogenous or endogenous stimulus. The incorporation of photoresponsive moieties at various components of dendrimer such as core, branches or at the peripheral end exaggerates its significance in various allied fields of nanotechnology which includes sensors, photoswitch, electronic widgets and in drug delivery systems. This is due to the light instigated geometrical modifications at the core or at the surface molecules which generates huge conformational changes throughout the hyperbranched structure. Further, numerous synthetic methodologies have been investigated for utilization of dendrimers in therapeutic drug delivery and its applicability towards stimuli responsive systems such as photo-instigated, thermal-instigated, and pH-instigated hyperbranched structures and their advancement in the field of nanomedicine. This paper highlights the fascinating theoretical advances and principal mechanisms of dendrimer synthesis and their ability to capture light that strengthens its applicability from radiant energy to medical photonics.


Asunto(s)
Dendrímeros/química , Portadores de Fármacos/química , Disponibilidad Biológica , Química Clic , Dendrímeros/síntesis química , Concentración de Iones de Hidrógeno , Nanoestructuras/química , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...