Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Biol Ther ; 25(1): 2308097, 2024 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-38306161

RESUMEN

The discovery of immune checkpoints and the development of immune checkpoint inhibitors (ICI) have achieved a durable response in advanced-stage cancer patients. However, there is still a high proportion of patients who do not benefit from ICI therapy due to a lack of response when first treated (primary resistance) or detection of disease progression months after objective response is observed (acquired resistance). Here, we review the current FDA-approved ICI for the treatment of certain solid malignancies, evaluate the contrasting responses to checkpoint blockade in different cancer types, explore the known mechanisms associated with checkpoint blockade resistance (CBR), and assess current strategies in the field that seek to overcome these mechanisms. In order to improve current therapies and develop new ones, the immunotherapy field still has an unmet need in identifying other molecules that act as immune checkpoints, and uncovering other mechanisms that promote CBR.


Asunto(s)
Neoplasias , Humanos , Inmunoterapia
2.
Cancer Immunol Immunother ; 72(8): 2783-2797, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37166485

RESUMEN

There is strong evidence that chemotherapy can induce tumor necrosis which can be exploited for the targeted delivery of immuno-oncology agents into the tumor microenvironment (TME). We hypothesized that docetaxel, a chemotherapeutic agent that induces necrosis, in combination with the bifunctional molecule NHS-IL-12 (M9241), which delivers recombinant IL-12 through specific targeting of necrotic regions in the tumor, would provide a significant antitumor benefit in the poorly inflamed murine tumor model, EMT6 (breast), and in the moderately immune-infiltrated tumor model, MC38 (colorectal). Docetaxel, as monotherapy or in combination with NHS-IL-12, promoted tumor necrosis, leading to the improved accumulation and retention of NHS-IL-12 in the TME. Significant antitumor activity and prolonged survival were observed in cohorts receiving docetaxel and NHS-IL-12 combination therapy in both the MC38 and EMT6 murine models. The therapeutic effects were associated with increased tumor infiltrating lymphocytes and were dependent on CD8+ T cells. Transcriptomics of the TME of mice receiving the combination therapy revealed the upregulation of genes involving crosstalk between innate and adaptive immunity factors, as well as the downregulation of signatures of myeloid cells. In addition, docetaxel and NHS-IL-12 combination therapy effectively controlled tumor growth of PD-L1 wild-type and PD-L1 knockout MC38 in vivo, implying this combination could be applied in immune checkpoint refractory tumors, and/or tumors regardless of PD-L1 status. The data presented herein provide the rationale for the design of clinical studies employing this combination or similar combinations of agents.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Ratones , Animales , Docetaxel , Linfocitos T CD8-positivos , Interleucina-12/farmacología , Necrosis , Microambiente Tumoral , Línea Celular Tumoral , Inmunoterapia
3.
Front Immunol ; 13: 993624, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159809

RESUMEN

Immunotherapy has emerged as an effective therapeutic approach for several cancer types. However, only a subset of patients exhibits a durable response due in part to immunosuppressive mechanisms that allow tumor cells to evade destruction by immune cells. One of the hallmarks of immune suppression is the paucity of tumor-infiltrating lymphocytes (TILs), characterized by low numbers of effector CD4+ and CD8+ T cells in the tumor microenvironment (TME). Additionally, the proper activation and function of lymphocytes that successfully infiltrate the tumor are hampered by the lack of co-stimulatory molecules and the increase in inhibitory factors. These contribute to the imbalance of effector functions by natural killer (NK) and T cells and the immunosuppressive functions by myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) in the TME, resulting in a dysfunctional anti-tumor immune response. Therefore, therapeutic regimens that elicit immune responses and reverse immune dysfunction are required to counter immune suppression in the TME and allow for the re-establishment of proper immune surveillance. Immuno-oncology (IO) agents, such as immune checkpoint blockade and TGF-ß trapping molecules, have been developed to decrease or block suppressive factors to enable the activity of effector cells in the TME. Therapeutic agents that target immunosuppressive cells, either by direct lysis or altering their functions, have also been demonstrated to decrease the barrier to effective immune response. Other therapies, such as tumor antigen-specific vaccines and immunocytokines, have been shown to activate and improve the recruitment of CD4+ and CD8+ T cells to the tumor, resulting in improved T effector to Treg ratio. The preclinical data on these diverse IO agents have led to the development of ongoing phase I and II clinical trials. This review aims to provide an overview of select therapeutic strategies that tip the balance from immunosuppression to immune activity in the TME.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Antígenos de Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico , Terapia de Inmunosupresión , Inmunoterapia/métodos , Factor de Crecimiento Transformador beta , Microambiente Tumoral
4.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35008958

RESUMEN

Worldwide, the number of cancer-related deaths continues to increase due to the ability of cancer cells to become chemotherapy-resistant and metastasize. For women with ovarian cancer, a staggering 70% will become resistant to the front-line therapy, cisplatin. Although many mechanisms of cisplatin resistance have been proposed, the key mechanisms of such resistance remain elusive. The RNA binding protein with multiple splicing (RBPMS) binds to nascent RNA transcripts and regulates splicing, transport, localization, and stability. Evidence indicates that RBPMS also binds to protein members of the AP-1 transcription factor complex repressing its activity. Until now, little has been known about the biological function of RBPMS in ovarian cancer. Accordingly, we interrogated available Internet databases and found that ovarian cancer patients with high RBPMS levels live longer compared to patients with low RBPMS levels. Similarly, immunohistochemical (IHC) analysis in a tissue array of ovarian cancer patient samples showed that serous ovarian cancer tissues showed weaker RBPMS staining when compared with normal ovarian tissues. We generated clustered regularly interspaced short palindromic repeats (CRISPR)-mediated RBPMS knockout vectors that were stably transfected in the high-grade serous ovarian cancer cell line, OVCAR3. The knockout of RBPMS in these cells was confirmed via bioinformatics analysis, real-time PCR, and Western blot analysis. We found that the RBPMS knockout clones grew faster and had increased invasiveness than the control CRISPR clones. RBPMS knockout also reduced the sensitivity of the OVCAR3 cells to cisplatin treatment. Moreover, ß-galactosidase (ß-Gal) measurements showed that RBPMS knockdown induced senescence in ovarian cancer cells. We performed RNAseq in the RBPMS knockout clones and identified several downstream-RBPMS transcripts, including non-coding RNAs (ncRNAs) and protein-coding genes associated with alteration of the tumor microenvironment as well as those with oncogenic or tumor suppressor capabilities. Moreover, proteomic studies confirmed that RBPMS regulates the expression of proteins involved in cell detoxification, RNA processing, and cytoskeleton network and cell integrity. Interrogation of the Kaplan-Meier (KM) plotter database identified multiple downstream-RBPMS effectors that could be used as prognostic and response-to-therapy biomarkers in ovarian cancer. These studies suggest that RBPMS acts as a tumor suppressor gene and that lower levels of RBPMS promote the cisplatin resistance of ovarian cancer cells.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Biomarcadores de Tumor , Sistemas CRISPR-Cas , Línea Celular Tumoral , Proliferación Celular , Senescencia Celular/genética , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Inmunohistoquímica , Clasificación del Tumor , Estadificación de Neoplasias , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/mortalidad , Neoplasias Ováricas/patología , Pronóstico , Empalme del ARN , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética
5.
Int J Mol Sci ; 22(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34445288

RESUMEN

Inflammatory Breast Cancer (IBC) is an aggressive form of invasive breast cancer, highly metastatic, representing 2-4% of all breast cancer cases in the United States. Despite its rare nature, IBC is responsible for 7-10% of all breast cancer deaths, with a 5-year survival rate of 40%. Thus, targeted and effective therapies against IBC are needed. Here, we proposed Lipocalin-2 (LCN2)-a secreted glycoprotein aberrantly abundant in different cancers-as a plausible target for IBC. In immunoblotting, we observed higher LCN2 protein levels in IBC cells than non-IBC cells, where the LCN2 levels were almost undetectable. We assessed the biological effects of targeting LCN2 in IBC cells with small interference RNAs (siRNAs) and small molecule inhibitors. siRNA-mediated LCN2 silencing in IBC cells significantly reduced cell proliferation, viability, migration, and invasion. Furthermore, LCN2 silencing promoted apoptosis and arrested the cell cycle progression in the G0/G1 to S phase transition. We used in silico analysis with a library of 25,000 compounds to identify potential LCN2 inhibitors, and four out of sixteen selected compounds significantly decreased cell proliferation, cell viability, and the AKT phosphorylation levels in SUM149 cells. Moreover, ectopically expressing LCN2 MCF7 cells, treated with two potential LCN2 inhibitors (ZINC00784494 and ZINC00640089) showed a significant decrease in cell proliferation. Our findings suggest LCN2 as a promising target for IBC treatment using siRNA and small molecule inhibitors.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Inflamatorias de la Mama/tratamiento farmacológico , Lipocalina 2/antagonistas & inhibidores , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Inflamatorias de la Mama/genética , Neoplasias Inflamatorias de la Mama/patología , Lipocalina 2/genética , Células MCF-7 , Terapia Molecular Dirigida/métodos , Invasividad Neoplásica , ARN Interferente Pequeño/farmacología , ARN Interferente Pequeño/uso terapéutico
6.
Int J Mol Sci ; 21(12)2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32575507

RESUMEN

Lipocalin-2 (LCN2) is a secreted glycoprotein linked to several physiological roles, including transporting hydrophobic ligands across cell membranes, modulating immune responses, maintaining iron homeostasis, and promoting epithelial cell differentiation. Although LNC2 is expressed at low levels in most human tissues, it is abundant in aggressive subtypes of cancer, including breast, pancreas, thyroid, ovarian, colon, and bile duct cancers. High levels of LCN2 have been associated with increased cell proliferation, angiogenesis, cell invasion, and metastasis. Moreover, LCN2 modulates the degradation, allosteric events, and enzymatic activity of matrix metalloprotease-9, a metalloprotease that promotes tumor cell invasion and metastasis. Hence, LCN2 has emerged as a potential therapeutic target against many cancer types. This review summarizes the most relevant findings regarding the expression, biological roles, and regulation of LCN2, as well as the proteins LCN2 interacts with in cancer. We also discuss the approaches to targeting LCN2 for cancer treatment that are currently under investigation, including the use of interference RNAs, antibodies, and gene editing.


Asunto(s)
Lipocalina 2/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Neoplasias/metabolismo , Regulación hacia Arriba , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Proliferación Celular , Edición Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Lipocalina 2/antagonistas & inhibidores , Terapia Molecular Dirigida , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias/tratamiento farmacológico , ARN Interferente Pequeño/farmacología , ARN Interferente Pequeño/uso terapéutico , Regulación hacia Arriba/efectos de los fármacos
7.
Int J Nanomedicine ; 15: 2809-2828, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32368056

RESUMEN

INTRODUCTION: Glioblastoma (GBM) is the most common and lethal of the central nervous system (CNS) malignancies. The initiation, progression, and infiltration ability of GBMs are attributed in part to the dysregulation of microRNAs (miRNAs). Thus, targeting dysregulated miRNAs with RNA oligonucleotides (RNA interference, RNAi) has been proposed for GBM treatment. Despite promising results in the laboratory, RNA oligonucleotides have clinical limitations that include poor RNA stability and off-target effects. RNAi therapies against GBM confront an additional obstacle, as they need to cross the blood-brain barrier (BBB). METHODS: Here, we developed gold-liposome nanoparticles conjugated with the brain targeting peptides apolipoprotein E (ApoE) and rabies virus glycoprotein (RVG). First, we functionalized gold nanoparticles with oligonucleotide miRNA inhibitors (OMIs), creating spherical nucleic acids (SNAs). Next, we encapsulated SNAs into ApoE, or RVG-conjugated liposomes, to obtain SNA-Liposome-ApoE and SNA-Liposome-RVG, respectively. We characterized each nanoparticle in terms of their size, charge, encapsulation efficiency, and delivery efficiency into U87 GBM cells in vitro. Then, they were administered intravenously (iv) in GBM syngeneic mice to evaluate their delivery efficiency to brain tumor tissue. RESULTS: SNA-Liposomes of about 30-50 nm in diameter internalized U87 GBM cells and inhibited the expression of miRNA-92b, an aberrantly overexpressed miRNA in GBM cell lines and GBM tumors. Conjugating SNA-Liposomes with ApoE or RVG peptides increased their systemic delivery to the brain tumors of GBM syngeneic mice. SNA-Liposome-ApoE demonstrated to accumulate at higher extension in brain tumor tissues, when compared with non-treated controls, SNA-Liposomes, or SNA-Liposome-RVG. DISCUSSION: SNA-Liposome-ApoE has the potential to advance the translation of miRNA-based therapies for GBM as well as other CNS disorders.


Asunto(s)
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Liposomas/administración & dosificación , Interferencia de ARN , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Técnicas de Transferencia de Gen , Glioblastoma/genética , Glioblastoma/patología , Oro/química , Humanos , Liposomas/química , Masculino , Nanopartículas del Metal/química , Ratones Endogámicos C57BL , MicroARNs/genética , Ácidos Nucleicos/química , Oligonucleótidos/química , Oligonucleótidos/genética , Oligonucleótidos/farmacocinética , Proteínas del Envoltorio Viral/genética , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Front Oncol ; 10: 602670, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33392094

RESUMEN

Cumulating evidence indicates that dysregulation of microRNAs (miRNAs) plays a central role in the initiation, progression, and drug resistance of cancer cells. However, the specific miRNAs contributing to drug resistance in ovarian cancer cells have not been fully elucidated. Aimed to identify potential miRNAs involved in platinum resistance, we performed a miRNA expression profile in cisplatin-sensitive and cisplatin-resistant ovarian cancer cells, and we found several differentially abundant miRNAs in the pair of cell lines. Notably, miR-18a-5p (miR-18a), a member of the oncogenic associated miR-17-92 cluster, was decreased in cisplatin-resistant as compared with cisplatin-sensitive cells. Real-time PCR analysis confirmed these findings. We then studied the biological, molecular, and therapeutic consequences of increasing the miR-18a levels with oligonucleotide microRNA mimics (OMM). Compared with a negative control OMM, transient transfection of a miR-18a-OMM reduced cell growth, cell proliferation, and cell invasion. Intraperitoneal injections of miR-18a-OMM-loaded folate-conjugated liposomes significantly reduced the tumor weight and the number of nodules in ovarian cancer-bearing mice when compared with a control-OMM group. Survival analysis using the Kaplan-Meier plotter database showed that ovarian cancer patients with high miR-18a levels live longer in comparison to patients with lower miR-18a levels. Bioinformatic analyses, real-time-PCR, Western blots, and luciferase reporter assays revealed that Matrix Metalloproteinase-3 (MMP-3) is a direct target of miR-18a. Small-interfering RNA (siRNA)-mediated silencing of MMP-3 reduced cell viability, cell growth, and the invasiveness potential of cisplatin-resistant ovarian cancer cells. Our study suggests that targeting miR-18a is a plausible therapeutic strategy for cisplatin-resistant ovarian cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...