Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38559006

RESUMEN

The substantia nigra pars reticulata (SNr), a crucial basal ganglia output nucleus, contains a dense expression of dopamine D1 receptors (D1Rs), along with dendrites belonging to dopaminergic neurons of substantia nigra pars compacta. These D1Rs are primarily located on the terminals of striatonigral medium spiny neurons, suggesting their involvement in the regulation of neurotransmitter release from the direct pathway in response to somatodendritic dopamine release. To explore the hypothesis that D1Rs modulate GABA release from striatonigral synapses, we conducted optical recordings of striatonigral activity and postsynaptic patch-clamp recordings from SNr neurons in the presence of dopamine and D1R agonists. We found that dopamine inhibits optogenetically triggered striatonigral GABA release by modulating vesicle fusion and Ca 2+ influx in striatonigral boutons. Notably, the effect of DA was independent of D1R activity but required activation of 5-HT1B receptors. Our results suggest a serotonergic mechanism involved in the therapeutic actions of dopaminergic medications for Parkinson's disease and psychostimulant-related disorders.

2.
bioRxiv ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38352367

RESUMEN

Autism Spectrum Disorders (ASD) consist of diverse neurodevelopmental conditions where core behavioral symptoms are critical for diagnosis. Altered dopamine neurotransmission in the striatum has been suggested to contribute to the behavioral features of ASD. Here, we examine dopamine neurotransmission in a mouse model of ASD characterized by elevated expression of the eukaryotic initiation factor 4E (eIF4E), a key regulator of cap-dependent translation, using a comprehensive approach that encompasses genetics, behavior, synaptic physiology, and imaging. The results indicate that increased eIF4E expression leads to behavioral inflexibility and impaired striatal dopamine release. The loss of normal dopamine neurotransmission is due to a defective nicotinic receptor signaling that regulates calcium dynamics in dopaminergic axons. These findings reveal an intricate interplay between eIF4E, DA neurotransmission, and behavioral flexibility, provide a mechanistic understanding of ASD symptoms and offer a foundation for targeted therapeutic interventions.

3.
Biol Open ; 12(10)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37815090

RESUMEN

Genetic variants affecting Heterogeneous Nuclear Ribonucleoprotein U (HNRNPU) have been identified in several neurodevelopmental disorders (NDDs). HNRNPU is widely expressed in the human brain and shows the highest postnatal expression in the cerebellum. Recent studies have investigated the role of HNRNPU in cerebral cortical development, but the effects of HNRNPU deficiency on cerebellar development remain unknown. Here, we describe the molecular and cellular outcomes of HNRNPU locus deficiency during in vitro neural differentiation of patient-derived and isogenic neuroepithelial stem cells with a hindbrain profile. We demonstrate that HNRNPU deficiency leads to chromatin remodeling of A/B compartments, and transcriptional rewiring, partly by impacting exon inclusion during mRNA processing. Genomic regions affected by the chromatin restructuring and host genes of exon usage differences show a strong enrichment for genes implicated in epilepsies, intellectual disability, and autism. Lastly, we show that at the cellular level HNRNPU downregulation leads to an increased fraction of neural progenitors in the maturing neuronal population. We conclude that the HNRNPU locus is involved in delayed commitment of neural progenitors to differentiate in cell types with hindbrain profile.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo U , Trastornos del Neurodesarrollo , Humanos , Cromatina , Ribonucleoproteína Heterogénea-Nuclear Grupo U/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo U/metabolismo , Trastornos del Neurodesarrollo/genética , Neurogénesis/genética , Rombencéfalo/metabolismo
4.
Cell Rep ; 42(8): 112901, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37505982

RESUMEN

Individuals with fragile X syndrome (FXS) are frequently diagnosed with autism spectrum disorder (ASD), including increased risk for restricted and repetitive behaviors (RRBs). Consistent with observations in humans, FXS model mice display distinct RRBs and hyperactivity that are consistent with dysfunctional cortico-striatal circuits, an area relatively unexplored in FXS. Using a multidisciplinary approach, we dissect the contribution of two populations of striatal medium spiny neurons (SPNs) in the expression of RRBs in FXS model mice. Here, we report that dysregulated protein synthesis at cortico-striatal synapses is a molecular culprit of the synaptic and ASD-associated motor phenotypes displayed by FXS model mice. Cell-type-specific translational profiling of the FXS mouse striatum reveals differentially translated mRNAs, providing critical information concerning potential therapeutic targets. Our findings uncover a cell-type-specific impact of the loss of fragile X messenger ribonucleoprotein (FMRP) on translation and the sequence of neuronal events in the striatum that drive RRBs in FXS.


Asunto(s)
Trastorno del Espectro Autista , Síndrome del Cromosoma X Frágil , Animales , Humanos , Ratones , Síndrome del Cromosoma X Frágil/metabolismo , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Ratones Noqueados , Modelos Animales de Enfermedad
5.
Mol Psychiatry ; 26(11): 6427-6450, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33879865

RESUMEN

Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) has been shown to activate the eIF2α kinase PERK to directly regulate translation initiation. Tight control of PERK-eIF2α signaling has been shown to be necessary for normal long-lasting synaptic plasticity and cognitive function, including memory. In contrast, chronic activation of PERK-eIF2α signaling has been shown to contribute to pathophysiology, including memory impairments, associated with multiple neurological diseases, making this pathway an attractive therapeutic target. Herein, using multiple genetic approaches we show that selective deletion of the PERK in mouse midbrain dopaminergic (DA) neurons results in multiple cognitive and motor phenotypes. Conditional expression of phospho-mutant eIF2α in DA neurons recapitulated the phenotypes caused by deletion of PERK, consistent with a causal role of decreased eIF2α phosphorylation for these phenotypes. In addition, deletion of PERK in DA neurons resulted in altered de novo translation, as well as changes in axonal DA release and uptake in the striatum that mirror the pattern of motor changes observed. Taken together, our findings show that proper regulation of PERK-eIF2α signaling in DA neurons is required for normal cognitive and motor function in a non-pathological state, and also provide new insight concerning the onset of neuropsychiatric disorders that accompany UPR failure.


Asunto(s)
Neuronas Dopaminérgicas , Factor 2 Eucariótico de Iniciación , Animales , Cognición , Neuronas Dopaminérgicas/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Factor 2 Eucariótico de Iniciación/genética , Ratones , Fosforilación , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
6.
Mov Disord ; 36(5): 1137-1146, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33460487

RESUMEN

BACKGROUND: Autophagy is intensively studied in cancer, metabolic and neurodegenerative diseases, but little is known about its role in pathological conditions linked to altered neurotransmission. We examined the involvement of autophagy in levodopa (l-dopa)-induced dyskinesia, a frequent motor complication developed in response to standard dopamine replacement therapy in parkinsonian patients. METHODS: We used mouse and non-human primate models of Parkinson's disease to examine changes in autophagy associated with chronic l-dopa administration and to establish a causative link between impaired autophagy and dyskinesia. RESULTS: We found that l-dopa-induced dyskinesia is associated with accumulation of the autophagy-specific substrate p62, a marker of autophagy deficiency. Increased p62 was observed in a subset of projection neurons located in the striatum and depended on l-dopa-mediated activation of dopamine D1 receptors, and mammalian target of rapamycin. Inhibition of mammalian target of rapamycin complex 1 with rapamycin counteracted the impairment of autophagy produced by l-dopa, and reduced dyskinesia. The anti-dyskinetic effect of rapamycin was lost when autophagy was constitutively suppressed in D1 receptor-expressing striatal neurons, through inactivation of the autophagy-related gene protein 7. CONCLUSIONS: These findings indicate that augmented responsiveness at D1 receptors leads to dysregulated autophagy, and results in the emergence of l-dopa-induced dyskinesia. They further suggest the enhancement of autophagy as a therapeutic strategy against dyskinesia. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Discinesia Inducida por Medicamentos , Trastornos Parkinsonianos , Animales , Antiparkinsonianos/toxicidad , Autofagia , Cuerpo Estriado , Modelos Animales de Enfermedad , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Discinesia Inducida por Medicamentos/etiología , Humanos , Levodopa/toxicidad , Ratones , Oxidopamina
7.
Front Cell Neurosci ; 14: 70, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32296308

RESUMEN

Macroautophagy (hereafter referred to as autophagy) plays a critical role in neuronal function related to development and degeneration. Here, we investigated whether autophagy is developmentally regulated in the striatum, a brain region implicated in neurodevelopmental disease. We demonstrate that autophagic flux is suppressed during striatal postnatal development, reaching adult levels around postnatal day 28 (P28). We also find that mTOR signaling, a key regulator of autophagy, increases during the same developmental period. We further show that mTOR signaling is responsible for suppressing autophagy, via regulation of Beclin-1 and VPS34 activity. Finally, we discover that autophagy is downregulated during late striatal postnatal development (P28) in mice with in utero exposure to valproic acid (VPA), an established mouse model of autism spectrum disorder (ASD). VPA-exposed mice also display deficits in striatal neurotransmission and social behavior. Correction of hyperactive mTOR signaling in VPA-exposed mice restores social behavior. These results demonstrate that neurons coopt metabolic signaling cascades to developmentally regulate autophagy and provide additional evidence that mTOR-dependent signaling pathways represent pathogenic signaling cascades in ASD mouse models that are active during specific postnatal windows.

8.
Elife ; 92020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31913125

RESUMEN

The basal ganglia are a group of subcortical nuclei that contribute to action selection and reinforcement learning. The principal neurons of the striatum, spiny projection neurons of the direct (dSPN) and indirect (iSPN) pathways, maintain low intrinsic excitability, requiring convergent excitatory inputs to fire. Here, we examined the role of autophagy in mouse SPN physiology and animal behavior by generating conditional knockouts of Atg7 in either dSPNs or iSPNs. Loss of autophagy in either SPN population led to changes in motor learning but distinct effects on cellular physiology. dSPNs, but not iSPNs, required autophagy for normal dendritic structure and synaptic input. In contrast, iSPNs, but not dSPNs, were intrinsically hyperexcitable due to reduced function of the inwardly rectifying potassium channel, Kir2. These findings define a novel mechanism by which autophagy regulates neuronal activity: control of intrinsic excitability via the regulation of potassium channel function.


Asunto(s)
Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Macroautofagia/genética , Macroautofagia/fisiología , Neuronas/fisiología , Animales , Autofagia/fisiología , Ganglios Basales , Conducta Animal , Femenino , Aprendizaje , Masculino , Ratones , Ratones Noqueados , Canales de Potasio/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Desempeño Psicomotor/fisiología , Factores Sexuales , Transcriptoma
9.
Elife ; 82019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31825308

RESUMEN

Local translation can support memory consolidation by supplying new proteins to synapses undergoing plasticity. Translation in adult forebrain dendrites is an established mechanism of synaptic plasticity and is regulated by learning, yet there is no evidence for learning-regulated protein synthesis in adult forebrain axons, which have traditionally been believed to be incapable of translation. Here, we show that axons in the adult rat amygdala contain translation machinery, and use translating ribosome affinity purification (TRAP) with RNASeq to identify mRNAs in cortical axons projecting to the amygdala, over 1200 of which were regulated during consolidation of associative memory. Mitochondrial and translation-related genes were upregulated, whereas synaptic, cytoskeletal, and myelin-related genes were downregulated; the opposite effects were observed in the cortex. Our results demonstrate that axonal translation occurs in the adult forebrain and is altered after learning, supporting the likelihood that local translation is more a rule than an exception in neuronal processes.


Asunto(s)
Axones/metabolismo , Complejo Nuclear Basolateral/fisiología , Corteza Cerebral/fisiología , Aprendizaje , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Animales , Ratas , Análisis de Secuencia de ARN
10.
Proc Natl Acad Sci U S A ; 116(7): 2707-2712, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30692248

RESUMEN

Inositol polyphosphate multikinase (IPMK), the key enzyme for the biosynthesis of higher inositol polyphosphates and phosphatidylinositol 3,4,5-trisphosphate, also acts as a versatile signaling player in regulating tissue growth and metabolism. To elucidate neurobehavioral functions of IPMK, we generated mice in which IPMK was deleted from the excitatory neurons of the postnatal forebrain. These mice showed no deficits in either novel object recognition or spatial memory. IPMK conditional knockout mice formed cued fear memory normally but displayed enhanced fear extinction. Signaling analyses revealed dysregulated expression of neural genes accompanied by selective activation of the mechanistic target of rapamycin (mTOR) regulatory enzyme p85 S6 kinase 1 (S6K1) in the amygdala following fear extinction. The IPMK mutants also manifested facilitated hippocampal long-term potentiation. These findings establish a signaling action of IPMK that mediates fear extinction.


Asunto(s)
Extinción Psicológica , Miedo/psicología , Memoria , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Activación Enzimática , Eliminación de Gen , Ratones , Ratones Noqueados , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Prosencéfalo/fisiología , Transducción de Señal , Regulación hacia Arriba
11.
Neuron ; 99(3): 540-554.e4, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30057204

RESUMEN

Neural circuits are formed and refined during childhood, including via critical changes in neuronal excitability. Here, we investigated the ontogeny of striatal intrinsic excitability. We found that dopamine neurotransmission increases from the first to the third postnatal week in mice and precedes the reduction in spiny projection neuron (SPN) intrinsic excitability during the fourth postnatal week. In mice developmentally deficient for striatal dopamine, direct pathway D1-SPNs failed to undergo maturation of excitability past P18 and maintained hyperexcitability into adulthood. We found that the absence of D1-SPN maturation was due to altered phosphatidylinositol 4,5-biphosphate dynamics and a consequent lack of normal ontogenetic increases in Kir2 currents. Dopamine replacement corrected these deficits in SPN excitability when provided from birth or during a specific period of juvenile development (P18-P28), but not during adulthood. These results identify a sensitive period of dopamine-dependent striatal maturation, with implications for the pathophysiology and treatment of neurodevelopmental disorders.


Asunto(s)
Cuerpo Estriado/crecimiento & desarrollo , Período Crítico Psicológico , Dopamina/farmacología , Neuronas/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Cuerpo Estriado/citología , Cuerpo Estriado/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas/efectos de los fármacos , Distribución Aleatoria
12.
Sci Signal ; 10(504)2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29114037

RESUMEN

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and autism spectrum disorder. FXS is caused by silencing of the FMR1 gene, which encodes fragile X mental retardation protein (FMRP), an mRNA-binding protein that represses the translation of its target mRNAs. One mechanism by which FMRP represses translation is through its association with cytoplasmic FMRP-interacting protein 1 (CYFIP1), which subsequently sequesters and inhibits eukaryotic initiation factor 4E (eIF4E). CYFIP1 shuttles between the FMRP-eIF4E complex and the Rac1-Wave regulatory complex, thereby connecting translational regulation to actin dynamics and dendritic spine morphology, which are dysregulated in FXS model mice that lack FMRP. Treating FXS mice with 4EGI-1, which blocks interactions between eIF4E and eIF4G, a critical interaction partner for translational initiation, reversed defects in hippocampus-dependent memory and spine morphology. We also found that 4EGI-1 normalized the phenotypes of enhanced metabotropic glutamate receptor (mGluR)-mediated long-term depression (LTD), enhanced Rac1-p21-activated kinase (PAK)-cofilin signaling, altered actin dynamics, and dysregulated CYFIP1/eIF4E and CYFIP1/Rac1 interactions in FXS mice. Our findings are consistent with the idea that an imbalance in protein synthesis and actin dynamics contributes to pathophysiology in FXS mice, and suggest that targeting eIF4E may be a strategy for treating FXS.


Asunto(s)
Actinas/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Espinas Dendríticas/efectos de los fármacos , Modelos Animales de Enfermedad , Factor 4E Eucariótico de Iniciación/antagonistas & inhibidores , Factor 4E Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/antagonistas & inhibidores , Factor 4G Eucariótico de Iniciación/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Hidrazonas/farmacología , Hidrazonas/uso terapéutico , Masculino , Trastornos de la Memoria/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Tiazoles/farmacología , Tiazoles/uso terapéutico
13.
Cereb Cortex ; 27(2): 1670-1685, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26826102

RESUMEN

Loss-of-function (LOF) mutations in CC2D1A cause a spectrum of neurodevelopmental disorders, including intellectual disability, autism spectrum disorder, and seizures, identifying a critical role for this gene in cognitive and social development. CC2D1A regulates intracellular signaling processes that are critical for neuronal function, but previous attempts to model the human LOF phenotypes have been prevented by perinatal lethality in Cc2d1a-deficient mice. To overcome this challenge, we generated a floxed Cc2d1a allele for conditional removal of Cc2d1a in the brain using Cre recombinase. While removal of Cc2d1a in neuronal progenitors using Cre expressed from the Nestin promoter still causes death at birth, conditional postnatal removal of Cc2d1a in the forebrain via calcium/calmodulin-dependent protein kinase II-alpha (CamKIIa) promoter-driven Cre generates animals that are viable and fertile with grossly normal anatomy. Analysis of neuronal morphology identified abnormal cortical dendrite organization and a reduction in dendritic spine density. These animals display deficits in neuronal plasticity and in spatial learning and memory that are accompanied by reduced sociability, hyperactivity, anxiety, and excessive grooming. Cc2d1a conditional knockout mice therefore recapitulate features of both cognitive and social impairment caused by human CC2D1A mutation, and represent a model that could provide much needed insights into the developmental mechanisms underlying nonsyndromic neurodevelopmental disorders.


Asunto(s)
Trastorno del Espectro Autista/genética , Discapacidad Intelectual/genética , Neuronas/citología , Prosencéfalo/patología , Proteínas Represoras/metabolismo , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dendritas/metabolismo , Dendritas/patología , Modelos Animales de Enfermedad , Humanos , Ratones Transgénicos , Plasticidad Neuronal/genética , Proteínas Represoras/deficiencia , Transducción de Señal/fisiología
14.
J Neurosci ; 36(45): 11402-11410, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27911742

RESUMEN

Autism spectrum disorder (ASD) is a constellation of neurodevelopmental presentations with high heritability and both phenotypic and genetic heterogeneity. To date, mutations in hundreds of genes have been associated to varying degrees with increased ASD risk. A better understanding of the functions of these genes and whether they fit together in functional groups or impact similar neuronal circuits is needed to develop rational treatment strategies. We will review current areas of emphasis in ASD research, starting from human genetics and exploring how mouse models of human mutations have helped identify specific molecular pathways (protein synthesis and degradation, chromatin remodeling, intracellular signaling), which are linked to alterations in circuit function and cognitive/social behavior. We will conclude by discussing how we can leverage the findings on molecular and cellular alterations found in ASD to develop therapies for neurodevelopmental disorders.


Asunto(s)
Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/terapia , Encéfalo/metabolismo , Terapia Genética/métodos , Proteínas del Tejido Nervioso/genética , Trastorno del Espectro Autista/diagnóstico , Medicina Basada en la Evidencia , Marcadores Genéticos/genética , Predisposición Genética a la Enfermedad/genética , Pruebas Genéticas/métodos , Humanos , Terapia Molecular Dirigida/métodos , Proteínas del Tejido Nervioso/metabolismo , Resultado del Tratamiento
15.
Swiss Med Wkly ; 146: w14314, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27399321

RESUMEN

Despite the use of antipsychotics to treat schizophrenia for the last several decades, little was understood about their molecular mechanisms of action. In this review, we discuss recent studies that have helped elucidate mechanisms of action of antipsychotics and their potential interplay with genetic, metabolomic, proteomic, and other cellular process-related discoveries in schizophrenia pathology. We also highlight genes that have been identified in multiple studies in both schizophrenia patients and in antipsychotic action that are related to glucose and cellular metabolism, the cytoskeleton, protein synthesis, cell adhesion and synaptic activity. Though some questions of antipsychotic mechanisms of action, such as primary versus off-target effects, remain, the recent gains in understanding how to treat schizophrenia at the molecular level are promising. We propose that these recent insights provide a new and more complete landscape for drug discovery and patient biomarker development.


Asunto(s)
Antipsicóticos/farmacología , Descubrimiento de Drogas , Farmacogenética , Esquizofrenia/tratamiento farmacológico , Humanos , Metabolómica , Proteómica , Esquizofrenia/genética
16.
Neuron ; 90(1): 1-3, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-27054611

RESUMEN

Epilepsy in Angelman Syndrome is thought to originate from an imbalance between local excitatory-inhibitory circuits that results in a generalized hyperexcitability. In this issue of Neuron, Judson et al. (2016) demonstrate that selective maternal deletion of Ube3a in cortical GABAergic neurons causes circuit hyperexcitability, increased seizure severity, and EEG abnormalities.


Asunto(s)
Síndrome de Angelman/genética , Epilepsia/genética , Neuronas GABAérgicas/metabolismo , Neocórtex/metabolismo , Células Piramidales/metabolismo , Convulsiones/genética , Ubiquitina-Proteína Ligasas/genética , Animales
17.
Biol Psychiatry ; 79(5): 362-371, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25193242

RESUMEN

BACKGROUND: Abnormal regulation of extracellular signal-regulated kinases 1 and 2 has been implicated in 3,4-dihydroxy-l-phenylalanine (L-DOPA)-induced dyskinesia (LID), a motor complication affecting Parkinson's disease patients subjected to standard pharmacotherapy. We examined the involvement of mitogen- and stress-activated kinase 1 (MSK1), a downstream target of extracellular signal-regulated kinases 1 and 2, and an important regulator of transcription in LID. METHODS: 6-Hydroxydopamine was used to produce a model of Parkinson's disease in MSK1 knockout mice and in ∆FosB- or ∆cJun-overexpressing transgenic mice, which were assessed for LID following long-term L-DOPA administration. Biochemical processes were evaluated by Western blotting or immunofluorescence. Histone H3 phosphorylation was analyzed by chromatin immunoprecipitation followed by promotor-specific quantitative polymerase chain reaction. RESULTS: Genetic inactivation of MSK1 attenuated LID and reduced the phosphorylation of histone H3 at Ser10 in the striatum. Chromatin immunoprecipitation analysis showed that this reduction occurred at the level of the fosB gene promoter. In line with this observation, the accumulation of ∆FosB produced by chronic L-DOPA was reduced in MSK1 knockout. Moreover, inducible overexpression of ∆FosB in striatonigral medium spiny neurons exacerbated dyskinetic behavior, whereas overexpression of ∆cJun, which reduces ∆FosB-dependent transcriptional activation, counteracted LID. CONCLUSIONS: Results indicate that abnormal regulation of MSK1 contributes to the development of LID and to the concomitant increase in striatal ∆FosB, which may occur via increased histone H3 phosphorylation at the fosB promoter. Results also show that accumulation of ∆FosB in striatonigral neurons is causally related to the development of dyskinesia.


Asunto(s)
Antiparkinsonianos/efectos adversos , Discinesia Inducida por Medicamentos/metabolismo , Levodopa/efectos adversos , Enfermedad de Parkinson/complicaciones , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Animales , Quinasas MAP Reguladas por Señal Extracelular/efectos de los fármacos , Histonas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neostriado/efectos de los fármacos , Neuronas/efectos de los fármacos , Oxidopamina/administración & dosificación , Fosforilación
18.
J Neurosci ; 35(49): 16213-20, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26658871

RESUMEN

Angelman syndrome (AS) is a neurodevelopmental disorder associated with developmental delay, lack of speech, motor dysfunction, and epilepsy. In the majority of the patients, AS is caused by the deletion of small portions of maternal chromosome 15 harboring the UBE3A gene. This results in a lack of expression of the UBE3A gene because the paternal allele is genetically imprinted. The UBE3A gene encodes an enzyme termed ubiquitin ligase E3A (E6-AP) that targets proteins for degradation by the 26S proteasome. Because neurodegenerative disease and other neurodevelopmental disorders have been linked to oxidative stress, we asked whether mitochondrial reactive oxygen species (ROS) played a role in impaired synaptic plasticity and memory deficits exhibited by AS model mice. We discovered that AS mice have increased levels of superoxide in area CA1 of the hippocampus that is reduced by MitoQ 10-methanesuflonate (MitoQ), a mitochondria-specific antioxidant. In addition, we found that MitoQ rescued impairments in hippocampal synaptic plasticity and deficits in contextual fear memory exhibited by AS model mice. Our findings suggest that mitochondria-derived oxidative stress contributes to hippocampal pathophysiology in AS model mice and that targeting mitochondrial ROS pharmacologically could benefit individuals with AS. SIGNIFICANCE STATEMENT: Oxidative stress has been hypothesized to contribute to the pathophysiology of neurodevelopmental disorders, including autism spectrum disorders and Angelman syndrome (AS). Herein, we report that AS model mice exhibit elevated levels of mitochondria-derived reactive oxygen species in pyramidal neurons in hippocampal area CA1. Moreover, we demonstrate that the administration of MitoQ (MitoQ 10-methanesuflonate), a mitochondria-specific antioxidant, to AS model mice normalizes synaptic plasticity and restores memory. Finally, our findings suggest that antioxidants that target the mitochondria could be used therapeutically to ameliorate synaptic and cognitive deficits in individuals with AS.


Asunto(s)
Síndrome de Angelman/complicaciones , Hipocampo , Mitocondrias/metabolismo , Trastornos del Movimiento/etiología , Trastornos del Movimiento/patología , Superóxidos/metabolismo , Sinapsis/fisiología , Análisis de Varianza , Animales , Condicionamiento Psicológico , Modelos Animales de Enfermedad , Estimulación Eléctrica , Miedo , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/ultraestructura , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Actividad Motora/fisiología , Compuestos Organofosforados/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
19.
Neurobiol Dis ; 83: 67-74, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26306459

RESUMEN

Autism spectrum disorder (ASD) is a group of heritable disorders with complex and unclear etiology. Classic ASD symptoms include social interaction and communication deficits as well as restricted, repetitive behaviors. In addition, ASD is often comorbid with intellectual disability. Fragile X syndrome (FXS) is the leading genetic cause of ASD, and is the most commonly inherited form of intellectual disability. Several mouse models of ASD and FXS exist, however the intellectual disability observed in ASD patients is not well modeled in mice. Using the Fmr1 knockout mouse and the eIF4E transgenic mouse, two previously characterized mouse models of fragile X syndrome and ASD, respectively, we generated the eIF4E/Fmr1 double mutant mouse. Our study shows that the eIF4E/Fmr1 double mutant mice display classic ASD behaviors, as well as cognitive dysfunction. Importantly, the learning impairments displayed by the double mutant mice spanned multiple cognitive tasks. Moreover, the eIF4E/Fmr1 double mutant mice display increased levels of basal protein synthesis. The results of our study suggest that the eIF4E/Fmr1 double mutant mouse may be a reliable model to study cognitive dysfunction in the context of ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/psicología , Trastornos del Conocimiento/genética , Modelos Animales de Enfermedad , Factor 4E Eucariótico de Iniciación/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Memoria/fisiología , Animales , Ansiedad/genética , Conducta Animal/fisiología , Condicionamiento Clásico/fisiología , Factor 4E Eucariótico de Iniciación/genética , Miedo/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Hipocampo/metabolismo , Relaciones Interpersonales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mutación
20.
Sci Signal ; 7(349): re10, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25351249

RESUMEN

Autism spectrum disorder (ASD) is a heterogeneous group of heritable neurodevelopmental disorders. Symptoms of ASD, which include deficits in social interaction skills, impaired communication ability, and ritualistic-like repetitive behaviors, appear in early childhood and continue throughout life. Genetic studies have revealed at least two clusters of genes frequently associated with ASD and intellectual disability: those encoding proteins involved in translational control and those encoding proteins involved in synaptic function. We hypothesize that mutations occurring in these two clusters of genes interfere with interconnected downstream signaling pathways in neuronal cells to cause ASD symptomatology. In this review, we discuss the monogenic forms of ASD caused by mutations in genes encoding for proteins that regulate translation and synaptic function. Specifically, we describe the function of these proteins, the intracellular signaling pathways that they regulate, and the current mouse models used to characterize the synaptic and behavioral features associated with their mutation. Finally, we summarize recent studies that have established a connection between mRNA translation and synaptic function in models of ASD and propose that dysregulation of one has a detrimental impact on the other.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Trastornos Generalizados del Desarrollo Infantil/fisiopatología , Modelos Biológicos , Proteínas del Tejido Nervioso/metabolismo , Biosíntesis de Proteínas/genética , Transducción de Señal/fisiología , Sinapsis/metabolismo , Animales , Factor 4E Eucariótico de Iniciación/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Humanos , Ratones , Fosfohidrolasa PTEN/metabolismo , Biosíntesis de Proteínas/fisiología , Proteínas Asociadas a SAP90-PSD95 , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA