Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Integr Comp Biol ; 63(6): 1240-1265, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-37468442

RESUMEN

Aside from being one of the most fascinating groups of marine organisms, cephalopods play a major role in marine food webs, both as predators and as prey, while representing key living economic assets, namely for artisanal and subsistence fisheries worldwide. Recent research suggests that cephalopods are benefitting from ongoing environmental changes and the overfishing of certain fish stocks (i.e., of their predators and/or competitors), putting forward the hypothesis that this group may be one of the few "winners" of climate change. While many meta-analyses have demonstrated negative and overwhelming consequences of ocean warming (OW), acidification (OA), and their combination for a variety of marine taxa, such a comprehensive analysis is lacking for cephalopod molluscs. In this context, the existing literature was surveyed for peer-reviewed articles featuring the sustained (≥24 h) and controlled exposure of cephalopod species (Cephalopoda class) to these factors, applying a comparative framework of mixed-model meta-analyses (784 control-treatment comparisons, from 47 suitable articles). Impacts on a wide set of biological categories at the individual level (e.g., survival, metabolism, behavior, cell stress, growth) were evaluated and contrasted across different ecological attributes (i.e., taxonomic lineages, climates, and ontogenetic stages). Contrary to what is commonly assumed, OW arises as a clear threat to cephalopods, while OA exhibited more restricted impacts. In fact, OW impacts were ubiquitous across different stages of ontogeny, taxonomical lineages (i.e., octopuses, squids, and cuttlefish). These results challenge the assumption that cephalopods benefit from novel ocean conditions, revealing an overarching negative impact of OW in this group. Importantly, we also identify lingering literature gaps, showing that most studies to date focus on OW and early life stages of mainly temperate species. Our results raise the need to consolidate experimental efforts in a wider variety of taxa, climate regions, life stages, and other key environmental stressors, such as deoxygenation and hypoxia, to better understand how cephalopods will cope with future climate change.


Asunto(s)
Conservación de los Recursos Naturales , Octopodiformes , Animales , Explotaciones Pesqueras , Organismos Acuáticos , Cambio Climático , Decapodiformes
2.
Environ Res ; 224: 115504, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36796604

RESUMEN

Marine heatwaves (MHWs) are extreme weather events featuring abnormally high seawater temperature, and expected to increase in frequency, duration and severity over this century. The impacts of these phenomena on physiological performance of coral reef species require understanding. This study aimed to evaluate the effects of a simulated MHW (category IV; ΔT = +2 °C, 11 days) (after exposure and 10-day recovery period) on fatty acid (FA) composition (as a biochemical indicator) and energy budget (i.e., growth, G, excretion (faecal, F and nitrogenous losses, U), respiration, R and food consumption, C) of a juvenile tropical surgeonfish species (Zebrasoma scopas). Significant and different changes were found under MHW scenario for some of the most abundant FA and respective groups (i.e., an increase in the contents of 14:0, 18:1n-9, ΣMonounsaturated (ΣMUFA) and 18:2n-6; and a decrease in the levels of 16:0, ΣSaturated (ΣSFA), 18:1n-7, 22:5n-3 and ΣPolyunsaturated (ΣPUFA)). The contents of 16:0 and ΣSFA were also significantly lower after MHW exposure compared to control (CTRL). Additionally, lower feed efficiency (FE), relative growth rate (RGR) and specific growth rate in terms of wet weight (SGRw), as well as higher energy loss for respiration were observed under MHW exposure conditions in comparison with CTRL and MHW recovery period. The energy proportion channelled for faeces dominated the mode of energy allocation, followed by growth in both treatments (after exposure). After MHW recovery, this trend was reversed, and a higher percentage was spent for growth and a lower fraction for faeces than in the MHW exposure period. Overall, FA composition, growth rates and energy loss for respiration of Z. Scopas were the physiological parameters most influenced (mainly in a negative way) by an 11-day MHW event. The observed effects in this tropical species can be exacerbated with increasing intensity and frequency of these extreme events.


Asunto(s)
Ácidos Grasos , Perciformes , Animales , Ecosistema , Peces , Agua de Mar , Temperatura
3.
Biol Bull ; 243(2): 104-119, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36548969

RESUMEN

AbstractGlobal ocean O2 content has varied significantly across the eons, both shaping and being shaped by the evolutionary history of life on planet Earth. Indeed, past O2 fluctuations have been associated with major extinctions and the reorganization of marine biota. Moreover, its most recent iteration-now anthropogenically driven-represents one of the most prominent challenges for both marine ecosystems and human societies, with ocean deoxygenation being regarded as one of the main drivers of global biodiversity loss. Yet ocean deoxygenation has received far less attention than concurrent environmental variables of marine climate change, namely, ocean warming and acidification, particularly in the field of experimental marine ecology. Together with the lack of consistent criteria defining gradual and acute changes in O2 content, a general lack of multifactorial studies featuring all three drivers and their interactions prevents an adequate interpretation of the potential effects of extreme and gradual deoxygenation. We present a comprehensive overview of the interplay between O2 and marine life across space and time and discuss the current knowledge gaps and future steps for deoxygenation research. This work may also contribute to the ongoing call for an integrative perspective on the combined effects of these three drivers of change for marine organisms and ecosystems worldwide.


Asunto(s)
Ecosistema , Agua de Mar , Animales , Humanos , Oxígeno , Organismos Acuáticos , Cambio Climático , Océanos y Mares
4.
J Exp Zool A Ecol Integr Physiol ; 333(2): 126-132, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31793756

RESUMEN

Atmospheric CO2 levels have been rising due to an increase in anthropic activities and its implications over marine ecosystems are unprecedented. The present study focused on the effects of ocean acidification (OA) on key hematological parameters of the juvenile small-spotted catsharks (Scyliorhinus canicula). Eggs were reared throughout the entire embryogenesis (~4 months) plus 5 additional months, in two experimental treatments (control: pCO2 ~ 400 µatm; and high CO2 : pCO2 ~ 900 µatm, Δ -0.3 pH units). After blood collection, the following hematological parameters were evaluated: (a) normal blood cells count (erythrocytes, leukocytes, and thrombocytes), (b) presence of erythrocytes with nuclear abnormalities, and (c) erythrocyte nucleus to cytoplasmic ratio. Concomitantly, to determine the cardiac and hematopoietic conditions, the spleen and heart to body ratios were also assessed. The present findings indicate that the measured variables may not be affected by elevated pCO2 in this temperate species, as no significant differences were observed between treatments across all the endpoints tested. Nonetheless, it is worth mentioning a decreasing trend observed in a number of thrombocytes associated with OA, which should foster further investigation, regarding other aspects of their coagulation response. Along with OA, other stressors are expected to impact marine life, such as warming and hypoxia. Thus, future research should aim to investigate the cumulative effect of these stressors on hematological parameters in sharks.


Asunto(s)
Dióxido de Carbono/efectos adversos , Tiburones/sangre , Animales , Recuento de Células Sanguíneas , Plaquetas , Eritrocitos Anormales , Corazón , Tamaño de los Órganos , Agua de Mar/química , Tiburones/embriología , Bazo
5.
Nat Commun ; 10(1): 4407, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31562298

RESUMEN

Understanding urothelial stem cell biology and differentiation has been limited by the lack of methods for their unlimited propagation. Here, we establish mouse urothelial organoids that can be maintained uninterruptedly for >1 year. Organoid growth is dependent on EGF and Wnt activators. High CD49f/ITGA6 expression features a subpopulation of organoid-forming cells expressing basal markers. Upon differentiation, multilayered organoids undergo reduced proliferation, decreased cell layer number, urothelial program activation, and acquisition of barrier function. Pharmacological modulation of PPARγ and EGFR promotes differentiation. RNA sequencing highlighted genesets enriched in proliferative organoids (i.e. ribosome) and transcriptional networks involved in differentiation, including expression of Wnt ligands and Notch components. Single-cell RNA sequencing (scRNA-Seq) analysis of the organoids revealed five clusters with distinct gene expression profiles. Together, with the use of γ-secretase inhibitors and scRNA-Seq, confirms that Notch signaling is required for differentiation. Urothelial organoids provide a powerful tool to study cell regeneration and differentiation.


Asunto(s)
Diferenciación Celular/genética , Integrina alfa6/genética , Organoides/metabolismo , Receptores Notch/metabolismo , Células Madre/metabolismo , Urotelio/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Factor de Crecimiento Epidérmico/farmacología , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Redes Reguladoras de Genes , Humanos , Integrina alfa6/metabolismo , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Desnudos , Ratones Transgénicos , Organoides/citología , Organoides/efectos de los fármacos , Receptores Notch/genética , Análisis de la Célula Individual/métodos , Células Madre/citología , Células Madre/efectos de los fármacos , Urotelio/citología
6.
Front Physiol ; 10: 975, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31404314

RESUMEN

The oceanic uptake of carbon dioxide (CO2) is increasing and changing the seawater chemistry, a phenomenon known as ocean acidification (OA). Besides the expected physiological impairments, there is an increasing evidence of detrimental OA effects on the behavioral ecology of certain marine taxa, including cephalopods. Within this context, the main goal of this study was to investigate, for the first time, the OA effects (∼1000 µatm; ΔpH = 0.4) in the development and behavioral ecology (namely shelter-seeking, hunting and response to a visual alarm cue) of the common cuttlefish (Sepia officinalis) early life stages, throughout the entire embryogenesis until 20 days after hatching. There was no evidence that OA conditions compromised the cuttlefish embryogenesis - namely development time, hatching success, survival rate and biometric data (length, weight and Fulton's condition index) of newly hatched cuttlefish were similar between the normocapnic and hypercapnic treatments. The present findings also suggest a certain behavioral resilience of the cuttlefish hatchlings toward near-future OA conditions. Shelter-seeking, hunting and response to a visual alarm cue did not show significant differences between treatments. Thus, we argue that cuttlefishes' nekton-benthic (and active) lifestyle, their adaptability to highly dynamic coastal and estuarine zones, and the already harsh conditions (hypoxia and hypercapnia) inside their eggs provide a degree of phenotypic plasticity that may favor the odds of the recruits in a future acidified ocean. Nonetheless, the interacting effects of multiple stressors should be further addressed, to accurately predict the resilience of this ecologically and economically important species in the oceans of tomorrow.

7.
Biol Lett ; 15(1): 20180627, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30958222

RESUMEN

The dramatic decline of European eel ( Anguilla anguilla) populations over recent decades has attracted considerable attention and concern. Furthermore, little is known about the sensitivity of the early stages of eels to projected future environmental change. Here, we investigated, for the first time, the potential combined effects of ocean warming (OW; Δ + 4°C; 18°C) and acidification (OA; Δ - 0.4 pH units) on the survival and migratory behaviour of A. anguilla glass eels, namely their preference towards riverine cues (freshwater and geosmin). Recently arrived individuals were exposed to isolated and combined OW and OA conditions for 100 days, adjusting for the salinity gradients associated with upstream migration. A two-choice test was used to investigate migratory activity and shifts in preference towards freshwater environments. While OW decreased survival and increased migratory activity, OA appears to hinder migratory response, reducing the preference for riverine cues. Our results suggest that future conditions could potentially favour an early settlement of glass eels, reducing the proportion of fully migratory individuals. Further research into the effects of climate change on eel migration and habitat selection is needed to implement efficient conservation plans for this critically endangered species.


Asunto(s)
Anguilla , Migración Animal , Animales , Ecosistema , Concentración de Iones de Hidrógeno , Océanos y Mares
8.
Elife ; 62017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-28691904

RESUMEN

Recent genome analyses have identified recurrent mutations in the cohesin complex in a wide range of human cancers. Here we demonstrate that the most frequently mutated subunit of the cohesin complex, STAG2, displays a strong synthetic lethal interaction with its paralog STAG1. Mechanistically, STAG1 loss abrogates sister chromatid cohesion in STAG2 mutated but not in wild-type cells leading to mitotic catastrophe, defective cell division and apoptosis. STAG1 inactivation inhibits the proliferation of STAG2 mutated but not wild-type bladder cancer and Ewing sarcoma cell lines. Restoration of STAG2 expression in a mutated bladder cancer model alleviates the dependency on STAG1. Thus, STAG1 and STAG2 support sister chromatid cohesion to redundantly ensure cell survival. STAG1 represents a vulnerability of cancer cells carrying mutations in the major emerging tumor suppressor STAG2 across different cancer contexts. Exploiting synthetic lethal interactions to target recurrent cohesin mutations in cancer, e.g. by inhibiting STAG1, holds the promise for the development of selective therapeutics.


Asunto(s)
Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mutaciones Letales Sintéticas , Proteínas de Ciclo Celular , División Celular , Línea Celular Tumoral , Supervivencia Celular , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...