Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Intervalo de año de publicación
1.
Protein Pept Lett ; 29(12): 1088-1098, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36177620

RESUMEN

BACKGROUND: Fungal and parasitic diseases are global health problems, and the available treatments are becoming ineffective, mainly due to the emergence of resistant strains of pathogens. Furthermore, the drugs currently in use exhibit high toxicity and side effects. The scarcity of efficient treatments for fungal and parasitic diseases has motivated the search for new drug candidates, including antimicrobial peptides. The chemokine class RP1 peptide shows inhibitory activity against bacteria, viruses, cancer cells and parasites. In addition, the organometallic compound ferrocene showed antiparasitic activity. OBJECTIVE: Study aimed to assess the effect of conjugation of the RP1 peptide with ferrocene in terms of its structure, biological activity against fungi and parasites and toxicity. METHODS: Peptides and conjugates were synthesized using solid phase peptide synthesis (SPPS). The Fc-RP1 peptide showed antifungal and antimalarial activities with low toxicity in the U87 and HepG2 cell lines. RESULTS: The mechanism of action of these peptides, analyzed by flow cytometry in the fungus Cryptococcus neoformans, was through membrane permeabilization, with an emphasis on the Fc-RP1 peptide that presented the highest rate of PI-positive cell marking. CONCLUSION: In conclusion, ferrocene conjugated to antimicrobial peptide RP1 is an attractive biomolecule for drug discovery against fungal and parasitic diseases.


Asunto(s)
Antimaláricos , Metalocenos/farmacología , Antifúngicos/farmacología , Péptidos Antimicrobianos
2.
Artículo en Inglés | MEDLINE | ID: mdl-28344595

RESUMEN

It is of popular and scientific knowledge that toxins from snake venom (among them the PLA2 and myotoxins) are neutralized by various compounds, such as antibodies and proteins purified from animal blood. Venomous and nonvenomous snakes have PLA2 inhibitory proteins, called PLIs, in their blood serum. One hypothesis that could explain the presence of these PLIs in the serum of venomous snakes would be self-protection against the enzymes of their own venom, which eventually could reach the circulatory system. However, the presence of PLIs in non-venomous snakes suggests that their physiological role might not be restricted to protection against PLA2 toxins, but could be extended to other functions, as in the innate immune system and local regulation of PLA2s. The present study aimed to review the currently available literature on PLA2 and myotoxin alpha inhibitors present in snake plasma, thus helping to improve the research on these molecules. Furthermore, this review includes current information regarding the mechanism of action of these inhibitors in an attempt to better understand their application, and proposes the use of these molecules as new models in snakebite therapy. These molecules may help in the neutralization of different types of phospholipases A2 and myotoxins, complementing the conventional serum therapy.

3.
Artículo en Inglés | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484694

RESUMEN

Abstract It is of popular and scientific knowledge that toxins from snake venom (among them the PLA2 and myotoxins) are neutralized by various compounds, such as antibodies and proteins purified from animal blood. Venomous and nonvenomous snakes have PLA2 inhibitory proteins, called PLIs, in their blood serum. One hypothesis that could explain the presence of these PLIs in the serum of venomous snakes would be self-protection against the enzymes of their own venom, which eventually could reach the circulatory system. However, the presence of PLIs in non-venomous snakes suggests that their physiological role might not be restricted to protection against PLA2 toxins, but could be extended to other functions, as in the innate immune system and local regulation of PLA2s. The present study aimed to review the currently available literature on PLA2 and myotoxin alpha inhibitors present in snake plasma, thus helping to improve the research on these molecules. Furthermore, this review includes current information regarding the mechanism of action of these inhibitors in an attempt to better understand their application, and proposes the use of these molecules as new models in snakebite therapy. These molecules may help in the neutralization of different types of phospholipases A2 and myotoxins, complementing the conventional serum therapy.

4.
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-954817

RESUMEN

It is of popular and scientific knowledge that toxins from snake venom (among them the PLA2 and myotoxins) are neutralized by various compounds, such as antibodies and proteins purified from animal blood. Venomous and nonvenomous snakes have PLA2 inhibitory proteins, called PLIs, in their blood serum. One hypothesis that could explain the presence of these PLIs in the serum of venomous snakes would be self-protection against the enzymes of their own venom, which eventually could reach the circulatory system. However, the presence of PLIs in non-venomous snakes suggests that their physiological role might not be restricted to protection against PLA2 toxins, but could be extended to other functions, as in the innate immune system and local regulation of PLA2s. The present study aimed to review the currently available literature on PLA2 and myotoxin alpha inhibitors present in snake plasma, thus helping to improve the research on these molecules. Furthermore, this review includes current information regarding the mechanism of action of these inhibitors in an attempt to better understand their application, and proposes the use of these molecules as new models in snakebite therapy. These molecules may help in the neutralization of different types of phospholipases A2 and myotoxins, complementing the conventional serum therapy.(AU)


Asunto(s)
Animales , Venenos de Serpiente , Fosfolipasas A2 , Inhibidores de Fosfolipasa A2 , Anticuerpos
5.
Toxicon ; 103: 160-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26160494

RESUMEN

Infectious diseases are among the leading global causes of death, increasing the search for novel antibacterial agents. Among these, biologically active peptides are an excellent research tool. Using solid-phase peptide synthesis (SPPS), this work aimed to synthesize the peptide derived from the C-terminal region of Bothropstoxin-I (BthTX-I) (p-BthTX-I, sequence: KKYRYHLKPFCKK), and its disulfide-linked dimeric form, obtained via air oxidation (p-BthTX-I)2. Two other peptides were synthesized to evaluate the dimerization effect on antimicrobial activity. In both sequences, the cysteine (Cys) residue was replaced by the serine (Ser) residue, differing, however, in their C-terminus position. The antimicrobial activity of the peptides against gram-negative (Escherichia (E.) coli) and gram-positive (Staphylococcus (S.) aureus) bacteria and yeast (Candida (C.) albicans) was evaluated. Interestingly, only peptides containing the Cys residue showed antimicrobial activity, suggesting the importance of Cys residue and its dimerization for the observed activity. Apparently, p-BthTX-I and (p-BthTX-I)2 did not promote lysis or form pores and were not able to interact with membranes. Furthermore, they neither showed antifungal activity against C. albicans nor toxicity against erythrocytes, epithelial cells, or macrophages, indicating a potential specificity against prokaryotic cells.


Asunto(s)
Antibacterianos/farmacología , Venenos de Crotálidos/farmacología , Péptidos/farmacología , Antibacterianos/química , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/crecimiento & desarrollo , Dicroismo Circular , Venenos de Crotálidos/química , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Hemólisis/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Péptidos/química , Conformación Proteica , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo
6.
Front Microbiol ; 6: 1526, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26793172

RESUMEN

Histoplasma capsulatum is responsible for a human systemic mycosis that primarily affects lung tissue. Macrophages are the major effector cells in humans that respond to the fungus, and the development of respiratory disease depends on the ability of Histoplasma yeast cells to survive and replicate within alveolar macrophages. Therefore, the interaction between macrophages and H. capsulatum is a decisive step in the yeast dissemination into host tissues. Although the role played by components of cell-mediated immunity in the host's defense system and the mechanisms used by the pathogen to evade the host immune response are well understood, knowledge regarding the effects induced by H. capsulatum in host cells at the nuclear level is limited. According to the present findings, H. capsulatum yeast cells display a unique architectural arrangement during the intracellular infection of cultured murine alveolar macrophages, characterized as a formation of aggregates that seem to surround the host cell nucleus, resembling a "crown." This extranuclear organization of yeast-aggregates generates damage on the nucleus of the host cell, producing DNA fragmentation and inducing apoptosis, even though the yeast cells are not located inside the nucleus and do not trigger changes in nuclear proteins. The current study highlights a singular intracellular arrangement of H. capsulatum yeast near to the nucleus of infected murine alveolar macrophages that may contribute to the yeast's persistence under intracellular conditions, since this fungal pathogen may display different strategies to prevent elimination by the host's phagocytic mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...