Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 30(7): 935-947, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37308596

RESUMEN

Mammalian genomes harbor abundant transposable elements (TEs) and their remnants, with numerous epigenetic repression mechanisms enacted to silence TE transcription. However, TEs are upregulated during early development, neuronal lineage, and cancers, although the epigenetic factors contributing to the transcription of TEs have yet to be fully elucidated. Here, we demonstrate that the male-specific lethal (MSL)-complex-mediated histone H4 acetylation at lysine 16 (H4K16ac) is enriched at TEs in human embryonic stem cells (hESCs) and cancer cells. This in turn activates transcription of subsets of full-length long interspersed nuclear elements (LINE1s, L1s) and endogenous retrovirus (ERV) long terminal repeats (LTRs). Furthermore, we show that the H4K16ac-marked L1 and LTR subfamilies display enhancer-like functions and are enriched in genomic locations with chromatin features associated with active enhancers. Importantly, such regions often reside at boundaries of topologically associated domains and loop with genes. CRISPR-based epigenetic perturbation and genetic deletion of L1s reveal that H4K16ac-marked L1s and LTRs regulate the expression of genes in cis. Overall, TEs enriched with H4K16ac contribute to the cis-regulatory landscape at specific genomic locations by maintaining an active chromatin landscape at TEs.


Asunto(s)
Elementos Transponibles de ADN , Retrovirus Endógenos , Animales , Humanos , Masculino , Elementos Transponibles de ADN/genética , Cromatina/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Retrovirus Endógenos/genética , Genómica , Mamíferos/genética
2.
Ann N Y Acad Sci ; 1506(1): 74-97, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34605044

RESUMEN

Single cell biology has the potential to elucidate many critical biological processes and diseases, from development and regeneration to cancer. Single cell analyses are uncovering the molecular diversity of cells, revealing a clearer picture of the variation among and between different cell types. New techniques are beginning to unravel how differences in cell state-transcriptional, epigenetic, and other characteristics-can lead to different cell fates among genetically identical cells, which underlies complex processes such as embryonic development, drug resistance, response to injury, and cellular reprogramming. Single cell technologies also pose significant challenges relating to processing and analyzing vast amounts of data collected. To realize the potential of single cell technologies, new computational approaches are needed. On March 17-19, 2021, experts in single cell biology met virtually for the Keystone eSymposium "Single Cell Biology" to discuss advances both in single cell applications and technologies.


Asunto(s)
Diferenciación Celular/fisiología , Reprogramación Celular/fisiología , Congresos como Asunto/tendencias , Desarrollo Embrionario/fisiología , Informe de Investigación , Análisis de la Célula Individual/tendencias , Animales , Linaje de la Célula/fisiología , Humanos , Macrófagos/fisiología , Análisis de la Célula Individual/métodos
3.
STAR Protoc ; 1(2): 100062, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-33000002

RESUMEN

Chromatin immunoprecipitation (ChIP) followed by next-generation sequencing is a powerful technique that characterizes the genome-wide DNA-binding profile of a protein of interest. The general ChIP-seq workflow has been applied widely to many sample types and target proteins, but sample-specific optimization of various steps is necessary to achieve high-quality data. This protocol is specifically optimized for cultured human embryonic stem cells (hESCs), including steps to check sample quality and non-specific enrichment of "hyper-ChIPable" regions prior to sequencing. For complete details on the use and execution of this protocol, please refer to Gunne-Braden et al. (2020).


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina/métodos , Células Madre Embrionarias Humanas , Células Cultivadas , ADN/química , ADN/genética , ADN/metabolismo , Células Madre Embrionarias Humanas/química , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos
4.
Cell Rep ; 32(2): 107901, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32668239

RESUMEN

Protein synthesis inhibitors (e.g., cycloheximide) block mitotic entry, suggesting that cell cycle progression requires protein synthesis until right before mitosis. However, cycloheximide is also known to activate p38 mitogen-activated protein kinase (MAPK), which can delay mitotic entry through a G2/M checkpoint. Here, we ask whether checkpoint activation or a requirement for protein synthesis is responsible for the cycloheximide effect. We find that p38 inhibitors prevent cycloheximide-treated cells from arresting in G2 phase and that G2 duration is normal in approximately half of these cells. The Wee1 inhibitor MK-1775 and Wee1/Myt1 inhibitor PD0166285 also prevent cycloheximide from blocking mitotic entry, raising the possibility that Wee1 and/or Myt1 mediate the cycloheximide-induced G2 arrest. Thus, protein synthesis during G2 phase is not required for mitotic entry, at least when the p38 checkpoint pathway is abrogated. However, M phase progression is delayed in cycloheximide-plus-kinase-inhibitor-treated cells, emphasizing the different requirements of protein synthesis for timely entry and completion of mitosis.


Asunto(s)
Puntos de Control de la Fase G2 del Ciclo Celular , Biosíntesis de Proteínas , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Cicloheximida/farmacología , Proteínas de Unión al ADN/metabolismo , Colorantes Fluorescentes/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Histonas/metabolismo , Humanos , Mitosis/efectos de los fármacos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Tirosina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
FEBS Lett ; 2020 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-32535913

RESUMEN

Cell division is a fundamental cellular process and the evolutionarily conserved networks that control cell division cycles adapt during development, tissue regeneration, cell de-differentiation and reprogramming, and a variety of pathological conditions. Embryonic development is a prime example of such versatility: fast, clock-like divisions hallmarking embryonic cells at early developmental stages become slower and controlled during cellular differentiation and lineage specification. In this review, we compare and contrast the unique cell cycle of mouse and human embryonic stem cells with that of early embryonic cells and of differentiated cells. We propose that embryonic stem cells provide an extraordinarily useful model system to understand cell cycle remodelling during embryonic-to-somatic transitions. We discuss how cell cycle networks help sustain embryonic stem cell pluripotency and self-renewal and how they safeguard cell identity and proper cell number in differentiated cells. Finally, we highlight the incredible diversity in cell cycle regulation within mammals and discuss the implications of studying cell cycle remodelling for understanding healthy and disease states.

6.
Cell Stem Cell ; 26(5): 693-706.e9, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32302522

RESUMEN

During early development, extrinsic triggers prompt pluripotent cells to begin the process of differentiation. When and how human embryonic stem cells (hESCs) irreversibly commit to differentiation is a fundamental yet unanswered question. By combining single-cell imaging, genomic approaches, and mathematical modeling, we find that hESCs commit to exiting pluripotency unexpectedly early. We show that bone morphogenetic protein 4 (BMP4), an important differentiation trigger, induces a subset of early genes to mirror the sustained, bistable dynamics of upstream signaling. Induction of one of these genes, GATA3, drives differentiation in the absence of BMP4. Conversely, GATA3 knockout delays differentiation and prevents fast commitment to differentiation. We show that positive feedback at the level of the GATA3-BMP4 axis induces fast, irreversible commitment to differentiation. We propose that early commitment may be a feature of BMP-driven fate choices and that interlinked feedback is the molecular basis for an irreversible transition from pluripotency to differentiation.


Asunto(s)
Células Madre Embrionarias Humanas , Proteína Morfogenética Ósea 4 , Diferenciación Celular , Factor de Transcripción GATA3/genética , Humanos , Transducción de Señal
7.
Mol Cell ; 64(2): 362-375, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27768873

RESUMEN

Cell division is characterized by a sequence of events by which a cell gives rise to two daughter cells. Quantitative measurements of cell-cycle dynamics in single cells showed that despite variability in G1-, S-, and G2 phases, duration of mitosis is short and remarkably constant. Surprisingly, there is no correlation between cell-cycle length and mitotic duration, suggesting that mitosis is temporally insulated from variability in earlier cell-cycle phases. By combining live cell imaging and computational modeling, we showed that positive feedback is the molecular mechanism underlying the temporal insulation of mitosis. Perturbing positive feedback gave rise to a sluggish, variable entry and progression through mitosis and uncoupled duration of mitosis from variability in cell cycle length. We show that positive feedback is important to keep mitosis short, constant, and temporally insulated and anticipate it might be a commonly used regulatory strategy to create modularity in other biological systems.


Asunto(s)
Proteínas de Ciclo Celular/genética , Cromatina/química , Histonas/genética , Mitosis , Modelos Estadísticos , Factores de Transcripción/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Retroalimentación Fisiológica , Fase G2/genética , Células HeLa , Histonas/metabolismo , Humanos , Cinética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Imagen Molecular , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo , Factores de Transcripción/metabolismo , Transcripción Genética , Proteína Fluorescente Roja
8.
Cell ; 149(7): 1500-13, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22726437

RESUMEN

Mitosis is triggered by the activation of Cdk1-cyclin B1 and its translocation from the cytoplasm to the nucleus. Positive feedback loops regulate the activation of Cdk1-cyclin B1 and help make the process irreversible and all-or-none in character. Here we examine whether an analogous process, spatial positive feedback, regulates Cdk1-cyclin B1 redistribution. We used chemical biology approaches and live-cell microscopy to show that nuclear Cdk1-cyclin B1 promotes the translocation of Cdk1-cyclin B1 to the nucleus. Mechanistic studies suggest that cyclin B1 phosphorylation promotes nuclear translocation and, conversely, nuclear translocation promotes cyclin B1 phosphorylation, accounting for the feedback. Interfering with the abruptness of Cdk1-cyclin B1 translocation affects the timing and synchronicity of subsequent mitotic events, underscoring the functional importance of this feedback. We propose that spatial positive feedback ensures a rapid, complete, robust, and irreversible transition from interphase to mitosis and suggest that bistable spatiotemporal switches may be widespread in biological regulation.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Núcleo Celular/metabolismo , Ciclina B1/metabolismo , Retroalimentación , Mitosis , Transporte Activo de Núcleo Celular/efectos de los fármacos , Ciclina B1/análisis , Células HeLa , Humanos , Modelos Estadísticos , Fosforilación , Sirolimus/análogos & derivados
10.
Nat Cell Biol ; 9(3): 324-30, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17310240

RESUMEN

The mitogen-activated protein kinase (MAPK) network is a conserved signalling module that regulates cell fate by transducing a myriad of growth-factor signals. The ability of this network to coordinate and process a variety of inputs from different growth-factor receptors into specific biological responses is, however, still not understood. We investigated how the MAPK network brings about signal specificity in PC-12 cells, a model for neuronal differentiation. Reverse engineering by modular-response analysis uncovered topological differences in the MAPK core network dependent on whether cells were activated with epidermal or neuronal growth factor (EGF or NGF). On EGF stimulation, the network exhibited negative feedback only, whereas a positive feedback was apparent on NGF stimulation. The latter allows for bi-stable Erk activation dynamics, which were indeed observed. By rewiring these regulatory feedbacks, we were able to reverse the specific cell responses to EGF and NGF. These results show that growth factor context determines the topology of the MAPK signalling network and that the resulting dynamics govern cell fate.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Sistema de Señalización de MAP Quinasas/fisiología , Animales , Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Proliferación Celular/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Citometría de Flujo , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Modelos Biológicos , Método de Montecarlo , Factor de Crecimiento Nervioso/farmacología , Células PC12 , Fosforilación/efectos de los fármacos , Proteína Quinasa C/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas Proto-Oncogénicas c-raf/metabolismo , ARN Interferente Pequeño/genética , Ratas , Receptor trkA/antagonistas & inhibidores , Acetato de Tetradecanoilforbol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...