Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967011

RESUMEN

Genomic imprinting, an epigenetic phenomenon leading to parent-of-origin-specific gene expression, has independently evolved in the endosperm of flowering plants and the placenta of mammals-tissues crucial for nurturing embryos. While transposable elements (TEs) frequently colocalize with imprinted genes and are implicated in imprinting establishment, direct investigations of the impact of de novo TE transposition on genomic imprinting remain scarce. In this study, we explored the effects of chemically induced transposition of the Copia element ONSEN on genomic imprinting in Arabidopsis thaliana. Through the combination of chemical TE mobilization and doubled haploid induction, we generated a line with 40 new ONSEN copies. Our findings reveal a preferential targeting of maternally expressed genes (MEGs) for transposition, aligning with the colocalization of H2A.Z and H3K27me3 in MEGs-both previously identified as promoters of ONSEN insertions. Additionally, we demonstrate that chemically-induced DNA hypomethylation induces global transcriptional deregulation in the endosperm, leading to the breakdown of MEG imprinting. This study provides insights into the consequences of chemically induced TE remobilization in the endosperm, revealing that chemically-induced epigenome changes can have long-term consequences on imprinted gene expression.

2.
Plant Cell ; 35(2): 874-888, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36427255

RESUMEN

The endosperm is a nutritive tissue supporting embryo growth in flowering plants. Most commonly, the endosperm initially develops as a coenocyte (multinucleate cell) and then cellularizes. This process of cellularization is frequently disrupted in hybrid seeds generated by crosses between different flowering plant species or plants that differ in ploidy, resulting in embryo arrest and seed lethality. The reason for embryo arrest upon cellularization failure remains unclear. In this study, we show that triploid Arabidopsis thaliana embryos surrounded by uncellularized endosperm mount an osmotic stress response that is connected to increased levels of abscisic acid (ABA) and enhanced ABA responses. Impairing ABA biosynthesis and signaling aggravated triploid seed abortion, while increasing endogenous ABA levels as well as the exogenous application of ABA-induced endosperm cellularization and suppressed embryo growth arrest. Taking these results together, we propose that endosperm cellularization is required to establish dehydration tolerance in the developing embryo, ensuring its survival during seed maturation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Endospermo/genética , Endospermo/metabolismo , Proteínas de Arabidopsis/metabolismo , Triploidía , Deshidratación , Arabidopsis/metabolismo , Semillas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
3.
Elife ; 102021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34427186

RESUMEN

Polycomb Repressive Complex 2 (PRC2)-mediated trimethylation of histone H3 on lysine 27 (H3K27me3) and methylation of histone 3 on lysine 9 (H3K9me) are two repressive epigenetic modifications that are typically localized in distinct regions of the genome. For reasons unknown, however, they co-occur in some organisms and special tissue types. In this study, we show that maternal alleles marked by H3K27me3 in the Arabidopsis endosperm were targeted by the H3K27me3 demethylase REF6 and became activated during germination. In contrast, maternal alleles marked by H3K27me3, H3K9me2, and CHG methylation (CHGm) are likely to be protected from REF6 targeting and remained silenced. Our study unveils that combinations of different repressive epigenetic modifications time a key adaptive trait by modulating access of REF6.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Endospermo/genética , Epigénesis Genética , Latencia en las Plantas
4.
Genome Biol ; 22(1): 141, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33957942

RESUMEN

BACKGROUND: Hybridization of plants that differ in number of chromosome sets (ploidy) frequently causes endosperm failure and seed arrest, a phenomenon referred to as triploid block. In Arabidopsis, loss of function of NRPD1, encoding the largest subunit of the plant-specific RNA polymerase IV (Pol IV), can suppress the triploid block. Pol IV generates short RNAs required to guide de novo methylation in the RNA-directed DNA methylation (RdDM) pathway. Recent work suggests that suppression of the triploid block by mutants in RdDM components differs, depending on whether the diploid pollen is derived from tetraploid plants or from the omission in second division 1 (osd1) mutant. This study aims to understand this difference. RESULTS: In this study, we find that the ability of mutants in the RdDM pathway to suppress the triploid block depends on their degree of inbreeding. While first homozygous generation mutants in RdDM components NRPD1, RDR2, NRPE1, and DRM2 have weak or no ability to rescue the triploid block, they are able to suppress the triploid block with successive generations of inbreeding. Inbreeding of nrpd1 was connected with a transgenerational loss of non-CG DNA methylation on sites jointly regulated by CHROMOMETHYLASES 2 and 3. CONCLUSIONS: Our data reveal that loss of RdDM function differs in its effect in early and late generations, which has important implications when interpreting the effect of RdDM mutants.


Asunto(s)
Arabidopsis/genética , Metilación de ADN/genética , Mutación/genética , ARN de Planta/metabolismo , Triploidía , Arabidopsis/embriología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Endogamia , ARN de Planta/genética , Semillas/genética
5.
Nucleic Acids Res ; 49(8): 4371-4385, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33744975

RESUMEN

Higher-order chromatin structure undergoes striking changes in response to various developmental and environmental signals, causing distinct cell types to adopt specific chromatin organization. High throughput chromatin conformation capture (Hi-C) allows studying higher-order chromatin structure; however, this technique requires substantial amounts of starting material, which has limited the establishment of cell type-specific higher-order chromatin structure in plants. To overcome this limitation, we established a protocol that is applicable to a limited amount of nuclei by combining the INTACT (isolation of nuclei tagged in specific cell types) method and Hi-C (INT-Hi-C). Using this INT-Hi-C protocol, we generated Hi-C data from INTACT purified endosperm and leaf nuclei. Our INT-Hi-C data from leaf accurately reiterated chromatin interaction patterns derived from conventional leaf Hi-C data. We found that the higher-order chromatin organization of mixed leaf tissues and endosperm differs and that DNA methylation and repressive histone marks positively correlate with the chromatin compaction level. We furthermore found that self-looped interacting genes have increased expression in leaves and endosperm and that interacting intergenic regions negatively impact on gene expression in the endosperm. Last, we identified several imprinted genes involved in long-range and trans interactions exclusively in endosperm. Our study provides evidence that the endosperm adopts a distinct higher-order chromatin structure that differs from other cell types in plants and that chromatin interactions influence transcriptional activity.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Ensamble y Desensamble de Cromatina , Cromatina/química , Endospermo/química , Imagenología Tridimensional/métodos , Análisis de la Célula Individual/métodos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Núcleo Celular/química , Metilación de ADN , ADN de Plantas/química , Regulación de la Expresión Génica de las Plantas , Impresión Genómica , Histonas/química , Hojas de la Planta/química , Hojas de la Planta/genética , Conformación Proteica
6.
Plant Physiol ; 185(4): 2003-2021, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33566101

RESUMEN

The Polycomb Repressive Complex 2 (PRC2) is well-known for its role in controlling developmental transitions by suppressing the premature expression of key developmental regulators. Previous work revealed that PRC2 also controls the onset of senescence, a form of developmental programmed cell death (PCD) in plants. Whether the induction of PCD in response to stress is similarly suppressed by the PRC2 remained largely unknown. In this study, we explored whether PCD triggered in response to immunity- and disease-promoting pathogen effectors is associated with changes in the distribution of the PRC2-mediated histone H3 lysine 27 trimethylation (H3K27me3) modification in Arabidopsis thaliana. We furthermore tested the distribution of the heterochromatic histone mark H3K9me2, which is established, to a large extent, by the H3K9 methyltransferase KRYPTONITE, and occupies chromatin regions generally not targeted by PRC2. We report that effector-induced PCD caused major changes in the distribution of both repressive epigenetic modifications and that both modifications have a regulatory role and impact on the onset of PCD during pathogen infection. Our work highlights that the transition to pathogen-induced PCD is epigenetically controlled, revealing striking similarities to developmental PCD.


Asunto(s)
Apoptosis/fisiología , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/fisiología , Interacciones Huésped-Patógeno/fisiología , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Interacciones Huésped-Patógeno/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología
7.
PLoS Genet ; 17(2): e1009370, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33571184

RESUMEN

Hybridization of closely related plant species is frequently connected to endosperm arrest and seed failure, for reasons that remain to be identified. In this study, we investigated the molecular events accompanying seed failure in hybrids of the closely related species pair Capsella rubella and C. grandiflora. Mapping of QTL for the underlying cause of hybrid incompatibility in Capsella identified three QTL that were close to pericentromeric regions. We investigated whether there are specific changes in heterochromatin associated with interspecific hybridizations and found a strong reduction of chromatin condensation in the endosperm, connected with a strong loss of CHG and CHH methylation and random loss of a single chromosome. Consistent with reduced DNA methylation in the hybrid endosperm, we found a disproportionate deregulation of genes located close to pericentromeric regions, suggesting that reduced DNA methylation allows access of transcription factors to targets located in heterochromatic regions. Since the identified QTL were also associated with pericentromeric regions, we propose that relaxation of heterochromatin in response to interspecies hybridization exposes and activates loci leading to hybrid seed failure.


Asunto(s)
Capsella/genética , Cromatina/genética , Endospermo/genética , Hibridación Genética , Semillas/genética , Capsella/clasificación , Centrómero/genética , Cromatina/metabolismo , Aberraciones Cromosómicas , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Sitios de Carácter Cuantitativo/genética , Especificidad de la Especie
8.
New Phytol ; 229(4): 2238-2250, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33091182

RESUMEN

Heat-stressed Arabidopsis plants release heterochromatin-associated transposable element (TE) silencing, yet it is not accompanied by major reductions of epigenetic repressive modifications. In this study, we explored the functional role of histone H1 in repressing heterochromatic TEs in response to heat stress. We generated and analyzed RNA and bisulfite-sequencing data of wild-type and h1 mutant seedlings before and after heat stress. Loss of H1 caused activation of pericentromeric Gypsy elements upon heat treatment, despite these elements remaining highly methylated. By contrast, nonpericentromeric Copia elements became activated concomitantly with loss of DNA methylation. The same Copia elements became activated in heat-treated chromomethylase 2 (cmt2) mutants, indicating that H1 represses Copia elements through maintaining DNA methylation under heat. We discovered that H1 is required for TE repression in response to heat stress, but its functional role differs depending on TE location. Strikingly, H1-deficient plants treated with the DNA methyltransferase inhibitor zebularine were highly tolerant to heat stress, suggesting that both H1 and DNA methylation redundantly suppress the plant response to heat stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis/fisiología , Elementos Transponibles de ADN , Respuesta al Choque Térmico , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metilación de ADN , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico/genética , Histonas/metabolismo
9.
Plant Cell ; 32(4): 950-966, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31988265

RESUMEN

In Arabidopsis (Arabidopsis thaliana), DNA-dependent RNA polymerase IV (Pol IV) is required for the formation of transposable element (TE)-derived small RNA transcripts. These transcripts are processed by DICER-LIKE3 into 24-nucleotide small interfering RNAs (siRNAs) that guide RNA-directed DNA methylation. In the pollen grain, Pol IV is also required for the accumulation of 21/22-nucleotide epigenetically activated siRNAs, which likely silence TEs via post-transcriptional mechanisms. Despite this proposed role of Pol IV, its loss of function in Arabidopsis does not cause a discernible pollen defect. Here, we show that the knockout of NRPD1, encoding the largest subunit of Pol IV, in the Brassicaceae species Capsella (Capsella rubella), caused postmeiotic arrest of pollen development at the microspore stage. As in Arabidopsis, all TE-derived siRNAs were depleted in Capsella nrpd1 microspores. In the wild-type background, the same TEs produced 21/22-nucleotide and 24-nucleotide siRNAs; these processes required Pol IV activity. Arrest of Capsella nrpd1 microspores was accompanied by the deregulation of genes targeted by Pol IV-dependent siRNAs. TEs were much closer to genes in Capsella compared with Arabidopsis, perhaps explaining the essential role of Pol IV in pollen development in Capsella. Our discovery that Pol IV is functionally required in Capsella microspores emphasizes the relevance of investigating different plant models.


Asunto(s)
Capsella/enzimología , Capsella/crecimiento & desarrollo , ADN Polimerasa beta/metabolismo , Proteínas de Plantas/metabolismo , Polen/enzimología , Polen/crecimiento & desarrollo , Secuencia de Aminoácidos , Arabidopsis/genética , Secuencia de Bases , ADN Polimerasa beta/química , Elementos Transponibles de ADN/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Mutación/genética , Tamaño de los Órganos , Proteínas de Plantas/química , Plantas Modificadas Genéticamente , ARN de Planta/genética , ARN Interferente Pequeño/metabolismo , Semillas/anatomía & histología , Transcripción Genética
10.
Elife ; 82019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31789592

RESUMEN

MADS-box transcription factors (TFs) are ubiquitous in eukaryotic organisms and play major roles during plant development. Nevertheless, their function in seed development remains largely unknown. Here, we show that the imprinted Arabidopsis thaliana MADS-box TF PHERES1 (PHE1) is a master regulator of paternally expressed imprinted genes, as well as of non-imprinted key regulators of endosperm development. PHE1 binding sites show distinct epigenetic modifications on maternal and paternal alleles, correlating with parental-specific transcriptional activity. Importantly, we show that the CArG-box-like DNA-binding motifs that are bound by PHE1 have been distributed by RC/Helitron transposable elements. Our data provide an example of the molecular domestication of these elements which, by distributing PHE1 binding sites throughout the genome, have facilitated the recruitment of crucial endosperm regulators into a single transcriptional network.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Arabidopsis/genética , Elementos Transponibles de ADN/genética , Domesticación , Endospermo/genética , Impresión Genómica , Proteínas de Dominio MADS/metabolismo , Secuencias de Aminoácidos , Proteínas de Arabidopsis/genética , Secuencia de Bases , Cruzamientos Genéticos , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Histonas/metabolismo , Lisina/metabolismo , Proteínas de Dominio MADS/genética , Metilación , Poliploidía , Regiones Promotoras Genéticas/genética , Unión Proteica/genética , Semillas/genética
11.
Genome Biol ; 20(1): 182, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31477159

RESUMEN

Following publication of the original article [1], the authors reported that Additional file 4, "Table S5. Parent-of-origin RNAseq dataset of 4 DAP INTACT-purified endosperm of Col × Ler reciprocal crosses" had the following error.

12.
Genes Dev ; 33(7-8): 466-476, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30819818

RESUMEN

The endosperm is an ephemeral tissue that nourishes the developing embryo, similar to the placenta in mammals. In most angiosperms, endosperm development starts as a syncytium, in which nuclear divisions are not followed by cytokinesis. The timing of endosperm cellularization largely varies between species, and the event triggering this transition remains unknown. Here we show that increased auxin biosynthesis in the endosperm prevents its cellularization, leading to seed arrest. Auxin-overproducing seeds phenocopy paternal-excess triploid seeds derived from hybridizations of diploid maternal plants with tetraploid fathers. Concurrently, auxin-related genes are strongly overexpressed in triploid seeds, correlating with increased auxin activity. Reducing auxin biosynthesis and signaling reestablishes endosperm cellularization in triploid seeds and restores their viability, highlighting a causal role of increased auxin in preventing endosperm cellularization. We propose that auxin determines the time of endosperm cellularization, and thereby uncovered a central role of auxin in establishing hybridization barriers in plants.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Endospermo , Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Regulación hacia Abajo , Endospermo/citología , Endospermo/genética , Endospermo/crecimiento & desarrollo , Mutación , Poliploidía , Semillas/genética , Semillas/crecimiento & desarrollo , Transducción de Señal/genética
13.
Genome Biol ; 20(1): 41, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30791924

RESUMEN

BACKGROUND: Imprinted genes are epigenetically modified during gametogenesis and maintain the established epigenetic signatures after fertilization, causing parental-specific gene expression. RESULTS: In this study, we show that imprinted paternally expressed genes (PEGs) in the Arabidopsis endosperm are marked by an epigenetic signature of Polycomb Repressive Complex2 (PRC2)-mediated H3K27me3 together with heterochromatic H3K9me2 and CHG methylation, which specifically mark the silenced maternal alleles of PEGs. The co-occurrence of H3K27me3 and H3K9me2 on defined loci in the endosperm drastically differs from the strict separation of both pathways in vegetative tissues, revealing tissue-specific employment of repressive epigenetic pathways in plants. Based on the presence of this epigenetic signature on maternal alleles, we are able to predict known PEGs at high accuracy and identify several new PEGs that we confirm using INTACT-based transcriptomes generated in this study. CONCLUSIONS: The presence of the three repressive epigenetic marks, H3K27me3, H3K9me2, and CHG methylation on the maternal alleles in the endosperm serves as a specific epigenetic signature that allows prediction of genes with parental-specific gene expression. Our study reveals that there are substantially more PEGs than previously identified, indicating that paternal-specific gene expression is of higher functional relevance than currently estimated. The combined activity of PRC2-mediated H3K27me3 together with the heterochromatic H3K9me3 has also been reported to silence the maternal Xist locus in mammalian preimplantation embryos, suggesting convergent employment of both pathways during the evolution of genomic imprinting.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Impresión Genómica , Proteínas Represoras/metabolismo , Arabidopsis/metabolismo , Endospermo/metabolismo , Complejo Represivo Polycomb 2
14.
Mol Plant ; 11(6): 815-832, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29604400

RESUMEN

Deposition of the H2A.Z histone variant by the SWR1 complex (SWR1-C) in regulatory regions of specific loci modulates transcription. Characterization of mutations in Arabidopsis thaliana homologs of yeast SWR1-C has revealed a role for H2A.Z exchange in a variety of developmental processes. Nevertheless, the exact composition of plant SWR1-C and how it is recruited to target genes remains to be established. Here we show that SWC4, the Arabidopsis homolog of yeast SANT domain protein Swc4/Eaf2, is a DNA-binding protein that interacts with SWR1-C subunits. We demonstrate that the swc4-1 knockout mutant is embryo-lethal, while SWC4 RNAi knockdown lines display pleiotropic phenotypic alterations in vegetative and reproductive traits, including acceleration of flowering time, indicating that SWC4 controls post-embryonic processes. Transcriptomic analyses and genome-wide profiling of H2A.Z indicate that SWC4 represses transcription of a number of genes, including the floral integrator FT and key transcription factors, mainly by modulating H2A.Z deposition. Interestingly, SWC4 silencing does not affect H2A.Z deposition at the FLC locus nor expression of this gene, a master regulator of flowering previously shown to be controlled by SWR1-C. Importantly, we find that SWC4 recognizes specific AT-rich DNA elements in the chromatin regions of target genes and that SWC4 silencing impairs SWR1-C binding at FT. Collectively, our data suggest that SWC4 regulates plant growth and development by aiding SWR1-C recruitment and modulating H2A.Z deposition.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , ADN de Plantas/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Histonas/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Flores/crecimiento & desarrollo , Secuencia Rica en GC , Técnicas de Silenciamiento del Gen , Unión Proteica , Semillas/crecimiento & desarrollo
15.
Nat Genet ; 50(2): 193-198, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29335548

RESUMEN

The regulation of parental genome dosage is of fundamental importance in animals and plants, as exemplified by X-chromosome inactivation and dosage compensation. The 'triploid block' is a classic example of dosage regulation in plants that establishes a reproductive barrier between species differing in chromosome number1,2. This barrier acts in the embryo-nourishing endosperm tissue and induces the abortion of hybrid seeds through a yet unknown mechanism 3 . Here we show that depletion of paternal epigenetically activated small interfering RNAs (easiRNAs) bypasses the triploid block in response to increased paternal ploidy in Arabidopsis thaliana. Paternal loss of the plant-specific RNA polymerase IV suppressed easiRNA formation and rescued triploid seeds by restoring small-RNA-directed DNA methylation at transposable elements (TEs), correlating with reduced expression of paternally expressed imprinted genes (PEGs). Our data suggest that easiRNAs form a quantitative signal for paternal chromosome number and that their balanced dosage is required for post-fertilization genome stability and seed viability.


Asunto(s)
Arabidopsis/genética , Dosificación de Gen/genética , Genoma de Planta , ARN Mensajero Almacenado/fisiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Plantas Modificadas Genéticamente , Semillas/genética
16.
Genes Dev ; 31(12): 1272-1287, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28743695

RESUMEN

Hybrid seed lethality as a consequence of interspecies or interploidy hybridizations is a major mechanism of reproductive isolation in plants. This mechanism is manifested in the endosperm, a dosage-sensitive tissue supporting embryo growth. Deregulated expression of imprinted genes such as ADMETOS (ADM) underpin the interploidy hybridization barrier in Arabidopsis thaliana; however, the mechanisms of their action remained unknown. In this study, we show that ADM interacts with the AT hook domain protein AHL10 and the SET domain-containing SU(VAR)3-9 homolog SUVH9 and ectopically recruits the heterochromatic mark H3K9me2 to AT-rich transposable elements (TEs), causing deregulated expression of neighboring genes. Several hybrid incompatibility genes identified in Drosophila encode for dosage-sensitive heterochromatin-interacting proteins, which has led to the suggestion that hybrid incompatibilities evolve as a consequence of interspecies divergence of selfish DNA elements and their regulation. Our data show that imbalance of dosage-sensitive chromatin regulators underpins the barrier to interploidy hybridization in Arabidopsis, suggesting that reproductive isolation as a consequence of epigenetic regulation of TEs is a conserved feature in animals and plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Proteínas de Ciclo Celular/metabolismo , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/farmacología , Aislamiento Reproductivo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Regulación de la Expresión Génica de las Plantas , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/metabolismo , Hibridación Genética
17.
Nat Protoc ; 12(2): 238-254, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28055034

RESUMEN

The early endosperm tissue of dicot species is very difficult to isolate by manual dissection. This protocol details how to apply the INTACT (isolation of nuclei tagged in specific cell types) system for isolating early endosperm nuclei of Arabidopsis at high purity and how to generate parental-specific epigenome profiles. As a Protocol Extension, this article describes an adaptation of an existing Nature Protocol that details the use of the INTACT method for purification of root nuclei. We address how to obtain the INTACT lines, generate the starting material and purify the nuclei. We describe a method that allows purity assessment, which has not been previously addressed. The purified nuclei can be used for ChIP and DNA bisulfite treatment followed by next-generation sequencing (seq) to study histone modifications and DNA methylation profiles, respectively. By using two different Arabidopsis accessions as parents that differ by a large number of single-nucleotide polymorphisms (SNPs), we were able to distinguish the parental origin of epigenetic modifications. Our protocol describes the only working method to our knowledge for generating parental-specific epigenome profiles of the early Arabidopsis endosperm. The complete protocol, from silique collection to finished libraries, can be completed in 2 d for bisulfite-seq (BS-seq) and 3 to 4 d for ChIP-seq experiments.This protocol is an extension to: Nat. Protoc. 6, 56-68 (2011); doi:10.1038/nprot.2010.175; published online 16 December 2010.


Asunto(s)
Núcleo Celular/genética , Endospermo/citología , Epigenómica/métodos , Arabidopsis/citología , Arabidopsis/genética , Reacción en Cadena de la Polimerasa
18.
EMBO J ; 35(12): 1298-311, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27113256

RESUMEN

Parental genomes in the endosperm are marked by differential DNA methylation and are therefore epigenetically distinct. This epigenetic asymmetry is established in the gametes and maintained after fertilization by unknown mechanisms. In this manuscript, we have addressed the key question whether parentally inherited differential DNA methylation affects de novo targeting of chromatin modifiers in the early endosperm. Our data reveal that polycomb-mediated H3 lysine 27 trimethylation (H3K27me3) is preferentially localized to regions that are targeted by the DNA glycosylase DEMETER (DME), mechanistically linking DNA hypomethylation to imprinted gene expression. Our data furthermore suggest an absence of de novo DNA methylation in the early endosperm, providing an explanation how DME-mediated hypomethylation of the maternal genome is maintained after fertilization. Lastly, we show that paternal-specific H3K27me3-marked regions are located at pericentromeric regions, suggesting that H3K27me3 and DNA methylation are not necessarily exclusive marks at pericentromeric regions in the endosperm.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Endospermo/genética , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Código de Histonas , Histonas/metabolismo , Proteínas Represoras/metabolismo , Metilación de ADN , Complejo Represivo Polycomb 2
19.
Elife ; 42015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26344545

RESUMEN

Genomic imprinting is an epigenetic phenomenon causing parent-of-origin specific differential expression of maternally and paternally inherited alleles. While many imprinted genes have been identified in plants, the functional roles of most of them are unknown. In this study, we systematically examine the functional requirement of paternally expressed imprinted genes (PEGs) during seed development in Arabidopsis thaliana. While none of the 15 analyzed peg mutants has qualitative or quantitative abnormalities of seed development, we identify three PEGs that establish postzygotic hybridization barriers in the endosperm, revealing that PEGs have a major role as speciation genes in plants. Our work reveals that a subset of PEGs maintains functional roles in the inbreeding plant Arabidopsis that become evident upon deregulated expression.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Genes de Plantas , Impresión Genómica , Aislamiento Reproductivo , Desarrollo de la Planta , Semillas/genética , Semillas/crecimiento & desarrollo
20.
Plant Cell ; 26(9): 3556-68, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25217506

RESUMEN

Plants of different ploidy levels are separated by a strong postzygotic hybridization barrier that is established in the endosperm. Deregulated parent-of-origin specific genes cause the response to interploidy hybridizations, revealing an epigenetic basis of this phenomenon. In this study, we present evidence that paternal hypomethylation can bypass the interploidy hybridization barrier by alleviating the requirement for the Polycomb Repressive Complex 2 (PRC2) in the endosperm. PRC2 epigenetically regulates gene expression by applying methylation marks on histone H3. Bypass of the barrier is mediated by suppressed expression of imprinted genes. We show that the hypomethylated pollen genome causes de novo CHG methylation directed to FIS-PRC2 target genes, suggesting that different epigenetic modifications can functionally substitute for each other. Our work presents a method for the generation of viable triploids, providing an impressive example of the potential of epigenome manipulations for plant breeding.


Asunto(s)
Arabidopsis/genética , Metilación de ADN/genética , Hibridación Genética , Ploidias , Polen/genética , Alelos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Endospermo/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Mutación/genética , Poliploidía , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...