Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Clin Pharm ; 46(2): 390-400, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38147281

RESUMEN

BACKGROUND: Nutritional deficit and oral iron gastrointestinal intolerance may be a common cause of iron deficiency, which can be managed by pharmacists. AIM: To understand the prevalence of iron deficiency in women of childbearing age with a self-reported history of intolerance to oral iron and the tolerability of three doses of an iron-whey-protein formulation in the care of these women. METHOD: Ferritin and haemoglobin levels were documented in women of childbearing age with oral iron gastrointestinal intolerance. In those with iron deficiency (ferritin < 30 µg/L), adherence, gastrointestinal tolerability, ferritin, transferrin saturation and haemoglobin levels were compared between their prior oral iron product and iron-whey-protein microspheres randomised to three doses (14 mg daily, 25 mg daily and 50 mg daily) for 12 weeks. RESULTS: Most screened women had low iron stores (128 (62.7%); ferritin < 30 µg/L), 65 (31.9%) had moderate to severe iron deficiency (ferritin < 12 µg/L) and 33 (16.2%) had iron deficiency anaemia (ferritin < 30 µg/L, haemoglobin < 12 g/dL). Amongst the 59 women who participated in the prospective clinical study of iron-whey-protein microspheres over 12 weeks, 48 (81.4%) were classified as adherent/persistent and fewer instances of gastrointestinal intolerance were reported (0.59 ± 0.91) when compared to 12 (20.3%) and (4.0 ± 2.2) respectively while taking the prior oral iron (Fisher's Exact and T-test respectively, both p < 0.001). There was no difference in adherence or tolerability of different iron-whey-protein formulation doses. Ferritin, haemoglobin and energy levels increased significantly over 12 weeks. CONCLUSION: Undiagnosed iron deficiency is common in women of childbearing age with a history of intolerance to oral iron and iron-whey-protein microspheres can improve adherence, GI tolerability, iron stores, haemoglobin and energy levels in these women. CLINICAL TRIAL REGISTRATION: Clinicaltrials.gov identifier (registration includes full trial protocol): NCT04778072.


Asunto(s)
Anemia Ferropénica , Deficiencias de Hierro , Femenino , Humanos , Hierro/efectos adversos , Estudios Prospectivos , Suero Lácteo/metabolismo , Anemia Ferropénica/diagnóstico , Anemia Ferropénica/tratamiento farmacológico , Anemia Ferropénica/epidemiología , Ferritinas , Hemoglobinas/metabolismo
2.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37958838

RESUMEN

Multiple myeloma (MM) is a hematological malignancy originated in the bone marrow and characterized by unhindered plasma cell proliferation that results in several clinical manifestations. Although the main role of blood platelets lies in hemostasis and thrombosis, platelets also play a pivotal role in a number of other pathological conditions. Platelets are the less-explored components from the tumor microenvironment in MM. Although some studies have recently revealed that MM cells have the ability to activate platelets even in the premalignant stage, this phenomenon has not been widely investigated in MM. Moreover, thrombocytopenia, along with bleeding, is commonly observed in those patients. In this review, we discuss the hemostatic disturbances observed in MM patients and the dynamic interaction between platelets and myeloma cells, along with present and future potential avenues for the use of platelets for diagnostic and therapeutic purposes.


Asunto(s)
Mieloma Múltiple , Trombosis , Humanos , Plaquetas/fisiología , Mieloma Múltiple/complicaciones , Mieloma Múltiple/tratamiento farmacológico , Hemorragia , Hemostasis , Trombosis/etiología , Comunicación Celular , Sistemas de Liberación de Medicamentos , Microambiente Tumoral
3.
Int J Nanomedicine ; 17: 4383-4400, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36164554

RESUMEN

Purpose: In the search for new drug delivery platforms for cardiovascular diseases and coating of medical devices, we synthesized eptifibatide-functionalized silver nanoparticles (AgNPs-EPI) and examined the pharmacological activity of AgNPs-EPI on platelets and endothelial cells in vitro and ex vivo. Methods: Spherical AgNPs linked to eptifibatide were synthesized and characterized. Cytotoxicity was measured in microvascular endothelial cells (HMEC-1), platelets and red blood cells. Platelet mitochondrial respiration was measured using the Oxygraph-2k, a high-resolution modular respirometry system. The effect of AgNPs-EPI on the aggregation of washed platelets was measured by light aggregometry and the ex vivo occlusion time was determined using a reference laboratory method. The surface amount of platelet receptors such as P-selectin and GPIIb/IIIa was measured. The influence of AgNPS-EPI on blood coagulation science was assessed. Finally, the effect of AgNPs-EPI on endothelial cells was measured by the levels of 6-keto-PGF1alpha, tPa, cGMP and vWF. Results: We describe the synthesis of AgNPs using eptifibatide as the stabilizing ligand. The molecules of this drug are directly bonded to the surface of the nanoparticles. The synthesized AgNPs-EPI did not affect the viability of platelets, endothelial cells and erythrocytes. Preincubation of platelets with AgNPs-EPI protected by mitochondrial oxidative phosphorylation capacity. AgNPs-EPI inhibited aggregation-induced P-selectin expression and GPIIb/IIIa conformational changes in platelets. AgNPs-EPI caused prolongation of the occlusion time in the presence of collagen/ADP and collagen/adrenaline. AgNPs-EPI regulated levels of 6-keto-PGF1alpha, tPa, vWf and cGMP produced in thrombin stimulated HMEC-1 cells. Conclusion: AgNPs-EPI show anti-aggregatory activity at concentrations lower than those required by the free drug acting via regulation of platelet aggregation, blood coagulation, and endothelial cell activity. Our results provide proof-of-principle evidence that AgNPs may be used as an effective delivery platform for antiplatelet drugs.


Asunto(s)
Nanopartículas del Metal , Selectina-P , Adenosina Difosfato/metabolismo , Adenosina Difosfato/farmacología , Plaquetas , Colágeno/metabolismo , Células Endoteliales/metabolismo , Epinefrina/metabolismo , Epinefrina/farmacología , Eptifibatida/farmacología , Ligandos , Selectina-P/metabolismo , Agregación Plaquetaria , Inhibidores de Agregación Plaquetaria/farmacología , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Plata/metabolismo , Plata/farmacología , Trombina/metabolismo , Factor de von Willebrand/metabolismo
4.
BMC Cancer ; 22(1): 1023, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36171564

RESUMEN

BACKGROUND: Cancer patients have an increased risk of developing venous thromboembolism, with up to 30% dying within a month of their development. Some cancer cells are known to induce platelet aggregation, and this interaction is understood to contribute to thrombosis and haematogenous metastasis. Many researchers have reported on extracellular vesicles (EVs) released from platelets. However, less is known about how cancer cells' EVs may affect platelet function. Here EVs released by triple-negative breast cancer (TNBC) cell line variants were extensively investigated in this regard. METHODS: EVs were separated from conditioned media of TNBC Hs578T and Hs578Ts(i)8 cells using filtration and ultracentrifugation and were characterised by nanoparticle tracking analysis, immunoblots, and transmission electron microscopy. Blood samples from consenting donors were procured, and their platelets collected by differential centrifugation. Light transmission aggregometry and optical microscopy evaluated the potential interaction of TNBC cells and their EVs with platelets. Global proteomic analysis was performed on the EVs, by in-solution digestion and mass spectrometry. Data analysis included the use of Perseus, FunRich, and Vesiclepedia. Immunoblotting was used as a secondary method to investigate some key EV cargo proteins identified by the global proteomics approach. RESULTS: Both TNBC cell variants induced platelet aggregation. Increasing cell numbers significantly reduced the time taken for platelet aggregation to occur. EVs released by the cells also resulted in platelet aggregation. The time to induce platelet aggregation was EV dose-dependent. Proteomics profiling and immunoblotting of the EVs' cargo identified candidate proteins (including uPAR and PDGFRß) that may be involved during this process. CONCLUSIONS: TNBC cells induce platelet aggregation. Furthermore, the cell-free EVs induced this undesirable effect. A number of EV cargo proteins were identified that may be relevant as therapeutic targets.


Asunto(s)
Vesículas Extracelulares , Neoplasias de la Mama Triple Negativas , Medios de Cultivo Condicionados/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Agregación Plaquetaria , Proteómica/métodos , Neoplasias de la Mama Triple Negativas/metabolismo
5.
Eur J Pharm Sci ; 175: 106236, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35710078

RESUMEN

Current pathophysiological findings indicate that damage to the alveolar epithelium plays a decisive role in the development of idiopathic pulmonary fibrosis (IPF). The available pharmacological interventions (i.e., oral pirfenidone and nintedanib) only slow down progression of the disease, but do not offer a cure. In order to develop new drug candidates, the pathophysiology of IPF needs to be better understood on a molecular level. It has previously been reported that a loss of caveolin-1 (Cav-1) contributes to profibrotic processes by causing reduced alveolar barrier function and fibrosis-like alterations of the lung-parenchyma. Conversely, overexpression of caveolin-1 appears to counteract the development of fibrosis by inhibiting the inflammasome NLRP3 and the associated expression of interleukin-1ß. In this study, the interaction between Fyn-kinase and caveolin-1 in the alveolar epithelium of various bleomycin (BLM)/TGF-ß damage models using precision-cut lung slices (PCLS), wildtype (WT) and caveolin-1 knockout (KO) mice as well as the human NCI-H441 cell line, were investigated. In WT mouse lung tissues, strong signals for Fyn-kinase were detected in alveolar epithelial type I cells, whereas in caveolin-1 KO animals, expression shifted to alveolar epithelial type II cells. Caveolin-1 and Fyn-kinase were found to be co-localized in isolated lipid rafts of NCI-H441 cell membrane fractions. These findings were corroborated by co-immunoprecipitation studies in which a co-localization of Cav-1 and Fyn-kinase was detected in the cell membrane of the alveolar epithelium. After TGF-ß and BLM-induced damage to the alveolar epithelium both in PCLS and cell culture experiments, a decrease in caveolin-1 and Fyn-kinase was found. Furthermore, TEER (transepithelial electrical resistance) measurements indicated that TGF-ß and BLM have a damaging effect on cell-cell contacts and thus impair the barrier function in NCI-H441 cell monolayers. This effect was attenuated after co-incubation with the Fyn-kinase inhibitor, PP-2. Our data suggest an involvement of Fyn-kinase and caveolin-1 in TGF-ß/bleomycin-induced impairment of alveolar barrier function and thus a possible role in the early stages of pulmonary fibrosis. Fyn-kinase and/or its complex with caveolin-1 might, therefore, be novel therapeutic targets in IPF.


Asunto(s)
Células Epiteliales Alveolares , Caveolina 1 , Fibrosis Pulmonar Idiopática , Proteínas Proto-Oncogénicas c-fyn , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Animales , Bleomicina/farmacología , Caveolina 1/metabolismo , Fibrosis , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
6.
Life Sci ; 290: 120236, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34953891

RESUMEN

AIMS: We have recently described a novel guanidinium-based compound, VP79s, which induces cytotoxicity in various cancer cell lines. Here, we aim to investigate the activity of VP79s and associated mechanisms of action in multiple myeloma (MM) cells in vitro and ex vivo. MAIN METHODS: The effects of VP79s on cell viability and induction of apoptosis was examined in a panel of drug-sensitive and drug-resistant MM cell lines, as well as ex vivo patient samples and normal donor lymphocytes and platelets. Cell signaling pathways associated with the biological effects of VP79s were analysed by immunoblotting and flow cytometry. Gene expression changes were assessed by quantitative real-time PCR analysis. KEY FINDINGS: VP79s was found to rapidly inhibit both constitutively active and IL-6-induced STAT3 signaling with concurrent downregulation of the IL-6 receptors, CD130 and CD126. VP79s induced a rapid and dose-dependent downregulation of anti-apoptotic Bcl-2 family member, myeloid cell leukaemia-1 (MCL-1). VP79s enhanced bortezomib induced cell death and was also found to overcome bone marrow stromal cell induced drug resistance. VP79s exhibited activity in ex vivo patient samples at concentrations which had no effect on peripheral blood mononuclear cells, lymphocytes and platelets isolated from healthy donors. SIGNIFICANCE: As VP79s resulted in rapid inhibition of the key IL-6/STAT3 signaling pathway and downregulation of MCL-1 expression with subsequent selective anti-myeloma activity, VP79s may be a potential therapeutic agent with a novel mechanism of action in MM cells.


Asunto(s)
Guanidina/farmacología , Mieloma Múltiple/tratamiento farmacológico , Factor de Transcripción STAT3/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Expresión Génica/genética , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Regulación Leucémica de la Expresión Génica/genética , Guanidina/análogos & derivados , Humanos , Interleucina-6/metabolismo , Janus Quinasa 1/metabolismo , Quinasas Janus/metabolismo , Leucemia/tratamiento farmacológico , Leucocitos Mononucleares/metabolismo , Mieloma Múltiple/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/efectos de los fármacos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Células Mieloides , Factor de Transcripción STAT3/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
7.
Front Pharmacol ; 12: 733743, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35153735

RESUMEN

Purpose: To study and compare the antibacterial properties and the potential cytotoxic effects of commercially available uncoated silver nanoparticles (AgNPs) with lipoic acid coated silver nanoparticles (AgNPsLA) developed by our group. The antibacterial, cytotoxic, and hemolytic properties of those NPs were assessed with the main objective of investigating if AgNPsLA could maintain their antibacterial properties while improving their biosafety profile over uncoated AgNPs within the blood vessel's microenvironment. Methods: Comercially available uncoated 2.6 nm AgNPs and 2.5 nm AgNPsLA synthesized and characterized as previously described by our group, were used in this study. Antimicrobial activity was assessed on a wide range of pathogens and expressed by minimal inhibitory concentrations (MIC). Assessment of cytotoxicity was carried out on human umbilical vein endothelial cells (HUVEC) using an MTT test. Detection of reactive oxygen species, cell apoptosis/necrosis in HUVEC, and measurement of mitochondrial destabilization in HUVEC and platelets were performed by flow cytometry. The potential harmful effect of nanoparticles on red blood cells (RBCs) was investigated measuring hemoglobin and LDH released after exposure to NPs. Transmission electron microscopy was also used to determine if AgNPs and AgNPsLA could induce any ultrastructural changes on HUVEC cells and Staphylococcus aureus bacteria. Results: AgNPs and AgNPsLA had antimicrobial properties against pathogens associated with catheter-related bloodstream infections. AgNPs, in contrast to AgNPsLA, induced ROS production and apoptosis in HUVEC, ultrastructural changes in HUVEC and S. aureus, depolarization of mitochondrial membrane in HUVEC and platelets, and also hemolysis. Conclusion: AgNPsLA synthesized by our group have antimicrobial activity and a better biosafety profile than uncoated AgNPs of similar size. Those observations are of critical importance for the future in vivo investigations and the potential application of AgNPsLA in medical devices for human use.

8.
Pharmaceutics ; 12(8)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781726

RESUMEN

The crystallization of poorly soluble drug molecules with an excipient into new solid phases called cocrystals has gained a considerable popularity in the pharmaceutical field. In this work, the cocrystal approach was explored for a very poorly water soluble antifungal active, itraconazole (ITR), which was, for the first time, successfully converted into this multicomponent solid using an aromatic coformer, terephthalic acid (TER). The new cocrystal was characterized in terms of its solid-state and structural properties, and a panel of pharmaceutical tests including wettability and dissolution were performed. Evidence of the cocrystal formation was obtained from liquid-assisted grinding, but not neat grinding. An efficient method of the ITR-TER cocrystal formation was ball milling. The stoichiometry of the ITR-TER phase was 2:1 and the structure was stabilized by H-bonds. When comparing ITR-TER with other cocrystals, the intrinsic dissolution rates and powder dissolution profiles correlated with the aqueous solubility of the coformers. The rank order of the dissolution rates of the active pharmaceutical ingredient (API) from the cocrystals was ITR-oxalic acid > ITR-succinic acid > ITR-TER. Additionally, the ITR-TER cocrystal was stable in aqueous conditions and did not transform to the parent drug. In summary, this work presents another cocrystal of ITR that might be of use in pharmaceutical formulations.

9.
Pharmaceutics ; 12(3)2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-32178442

RESUMEN

The use of nanocarriers is being researched to achieve oral peptide delivery. Insulin-associated anionic polyelectrolyte nanoparticle complexes (PECs) were formed that comprised hyaluronic acid and chitosan in an optimum mass mixing ratio of 5:1 (MR 5), followed by coating with a pH-dependent polymer. Free insulin was separated from PECs by size exclusion chromatography and then measured by HPLC. The association efficiency of insulin in PECs was >95% and the loading was ~83 µg/mg particles. Dynamic light scattering and nanoparticle tracking analysis of PECs revealed low polydispersity, a negative zeta potential range of -40 to -50 mV, and a diameter range of 95-200 nm. Dissolution studies in simulated small intestinal fluid (FaSSIF-V2) revealed that the PECs were colloidally stable. PECs that were coated with Eudragit® L-100 delayed insulin release in FaSSIF-V2 and protected insulin against pancreatin attack more than uncoated PECs. Uncoated anionic PECs interacted weakly with mucin in vitro and were non-cytotoxic to Caco-2 cells. The coated and uncoated PECs, both concentrated further by ultrafiltration, permitted dosing of 50 IU/kg in rat jejunal instillations, but they failed to reduce plasma glucose or deliver insulin to the blood. When ad-mixed with the permeation enhancer (PE), sucrose laurate (100 mM), the physicochemical parameters of coated PECs were relatively unchanged, however blood glucose was reduced by 70%. In conclusion, the use of a PE allowed for the PEC-released bioactive insulin to permeate the jejunum. This has implications for the design of orally delivered particles that can release the payload when formulated with enhancers.

10.
Front Cardiovasc Med ; 6: 139, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31620449

RESUMEN

Nanomaterials have been recently introduced as potential diagnostic and therapeutic tools in the medical field. One of the main concerns in relation to the use of nanomaterials in humans is their potential toxicity profile and blood compatibility. In fact, and due to their small size, NPs can translocate into the systemic circulation even after dermal contact, inhalation, or oral ingestion. Once in the blood stream, nanoparticles become in contact with the different components of the blood and can potentially interfere with normal platelet function leading to bleeding or thrombosis. Metallic NPs have been already used for diagnosis and treatment purposes due to their unique characteristics. However, the potential interactions between metallic NPs and platelets has not been widely studied and reported. This review focuses on the factors that can affect platelet activation and aggregation by metal NPs and the nature of such interactions, providing a summary of the effect of various metal NPs on platelet function available in the literature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...