Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Med Genet ; 61(3): 232-238, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-37813462

RESUMEN

BACKGROUND: The Ehlers-Danlos syndromes (EDS) are heritable disorders of connective tissue (HDCT), reclassified in the 2017 nosology into 13 subtypes. The genetic basis for hypermobile Ehlers-Danlos syndrome (hEDS) remains unknown. METHODS: Whole exome sequencing (WES) was undertaken on 174 EDS patients recruited from a national diagnostic service for complex EDS and a specialist clinic for hEDS. Patients had already undergone expert phenotyping, laboratory investigation and gene sequencing, but were without a genetic diagnosis. Filtered WES data were reviewed for genes underlying Mendelian disorders and loci reported in EDS linkage, transcriptome and genome-wide association studies (GWAS). A genetic burden analysis (Minor Allele Frequency (MAF) <0.05) incorporating 248 Avon Longitudinal Study of Parents and Children (ALSPAC) controls sequenced as part of the UK10K study was undertaken using TASER methodology. RESULTS: Heterozygous pathogenic (P) or likely pathogenic (LP) variants were identified in known EDS and Loeys-Dietz (LDS) genes. Multiple variants of uncertain significance where segregation and functional analysis may enable reclassification were found in genes associated with EDS, LDS, heritable thoracic aortic disease (HTAD), Mendelian disorders with EDS symptomatology and syndromes with EDS-like features. Genetic burden analysis revealed a number of novel loci, although none reached the threshold for genome-wide significance. Variants with biological plausibility were found in genes and pathways not currently associated with EDS or HTAD. CONCLUSIONS: We demonstrate the clinical utility of large panel-based sequencing and WES for patients with complex EDS in distinguishing rare EDS subtypes, LDS and related syndromes. Although many of the P and LP variants reported in this cohort would be identified with current panel testing, they were not at the time of this study, highlighting the use of extended panels and WES as a clinical tool for complex EDS. Our results are consistent with the complex genetic architecture of EDS and suggest a number of novel hEDS and HTAD candidate genes and pathways.


Asunto(s)
Enfermedades del Tejido Conjuntivo , Síndrome de Ehlers-Danlos , Niño , Humanos , Estudio de Asociación del Genoma Completo , Estudios Longitudinales , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética
2.
medRxiv ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37873269

RESUMEN

Background: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting over 30,000 people in the United States. It is characterized by the progressive decline of the nervous system that leads to the weakening of muscles which impacts physical function. Approximately, 15% of individuals diagnosed with ALS have a known genetic variant that contributes to their disease. As therapies that slow or prevent symptoms, such as antisense oligonucleotides, continue to develop, it is important to discover novel genes that could be targets for treatment. Additionally, as cohorts continue to grow, performing analyses in ALS subtypes, such as primary lateral sclerosis (PLS), becomes possible due to an increase in power. These analyses could highlight novel pathways in disease manifestation. Methods: Building on our previous discoveries using rare variant association analyses, we conducted rare variant burden testing on a substantially larger cohort of 6,970 ALS patients from a large multi-ethnic cohort as well as 166 PLS patients, and 22,524 controls. We used intolerant domain percentiles based on sub-region Residual Variation Intolerance Score (subRVIS) that have been described previously in conjunction with gene based collapsing approaches to conduct burden testing to identify genes that associate with ALS and PLS. Results: A gene based collapsing model showed significant associations with SOD1, TARDBP, and TBK1 (OR=19.18, p = 3.67 × 10-39; OR=4.73, p = 2 × 10-10; OR=2.3, p = 7.49 × 10-9, respectively). These genes have been previously associated with ALS. Additionally, a significant novel control enriched gene, ALKBH3 (p = 4.88 × 10-7), was protective for ALS in this model. An intolerant domain based collapsing model showed a significant improvement in identifying regions in TARDBP that associated with ALS (OR=10.08, p = 3.62 × 10-16). Our PLS protein truncating variant collapsing analysis demonstrated significant case enrichment in ANTXR2 (p=8.38 × 10-6). Conclusions: In a large multi-ethnic cohort of 6,970 ALS patients, rare variant burden testing validated known ALS genes and identified a novel potentially protective gene, ALKBH3. A first-ever analysis in 166 patients with PLS found a candidate association with loss-of-function mutations in ANTXR2.

3.
Eur J Hum Genet ; 31(2): 231-238, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36474026

RESUMEN

NHS genetics centres in Scotland sought to investigate the Genomics England 100,000 Genomes Project diagnostic utility to evaluate genome sequencing for in rare, inherited conditions. Four regional services recruited 999 individuals from 394 families in 200 rare phenotype categories, with negative historic genetic testing. Genome sequencing was performed at Edinburgh Genomics, and phenotype and sequence data were transferred to Genomics England for variant calling, gene-based filtering and variant prioritisation. NHS Scotland genetics laboratories performed interpretation, validation and reporting. New diagnoses were made in 23% cases - 19% in genes implicated in disease at the time of variant prioritisation, and 4% from later review of additional genes. Diagnostic yield varied considerably between phenotype categories and was minimal in cases with prior exome testing. Genome sequencing with gene panel filtering and reporting achieved improved diagnostic yield over previous historic testing but not over now routine trio-exome sequence tests. Re-interpretation of genomic data with updated gene panels modestly improved diagnostic yield at minimal cost. However, to justify the additional costs of genome vs exome sequencing, efficient methods for analysis of structural variation will be required and / or cost of genome analysis and storage will need to decrease.


Asunto(s)
Pruebas Genéticas , Genómica , Genómica/métodos , Fenotipo , Mapeo Cromosómico , Inglaterra
4.
Res Sq ; 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38196621

RESUMEN

Background: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting over 30,000 people in the United States. It is characterized by the progressive decline of the nervous system that leads to the weakening of muscles which impacts physical function. Approximately, 15% of individuals diagnosed with ALS have a known genetic variant that contributes to their disease. As therapies that slow or prevent symptoms, such as antisense oligonucleotides, continue to develop, it is important to discover novel genes that could be targets for treatment. Additionally, as cohorts continue to grow, performing analyses in ALS subtypes, such as primary lateral sclerosis (PLS), becomes possible due to an increase in power. These analyses could highlight novel pathways in disease manifestation. Methods: Building on our previous discoveries using rare variant association analyses, we conducted rare variant burden testing on a substantially larger cohort of 6,970 ALS patients from a large multi-ethnic cohort as well as 166 PLS patients, and 22,524 controls. We used intolerant domain percentiles based on sub-region Residual Variation Intolerance Score (subRVIS) that have been described previously in conjunction with gene based collapsing approaches to conduct burden testing to identify genes that associate with ALS and PLS. Results: A gene based collapsing model showed significant associations with SOD1, TARDBP, and TBK1 (OR=19.18, p = 3.67 × 10-39; OR=4.73, p = 2 × 10-10; OR=2.3, p = 7.49 × 10-9, respectively). These genes have been previously associated with ALS. Additionally, a significant novel control enriched gene, ALKBH3 (p = 4.88 × 10-7), was protective for ALS in this model. An intolerant domain based collapsing model showed a significant improvement in identifying regions in TARDBP that associated with ALS (OR=10.08, p = 3.62 × 10-16). Our PLS protein truncating variant collapsing analysis demonstrated significant case enrichment in ANTXR2 (p=8.38 × 10-6). Conclusions: In a large multi-ethnic cohort of 6,970 ALS patients, rare variant burden testing validated known ALS genes and identified a novel potentially protective gene, ALKBH3. A first-ever analysis in 166 patients with PLS found a candidate association with loss-of-function mutations in ANTXR2.

5.
Front Immunol ; 13: 998368, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225912

RESUMEN

miRNAs dictate relevant virus-host interactions, offering new avenues for interventions to achieve an HIV remission. We aimed to enhance HIV-specific cytotoxic responses-a hallmark of natural HIV control- by miRNA modulation in T cells. We recruited 12 participants six elite controllers and six patients with chronic HIV infection on long-term antiretroviral therapy ("progressors"). Elite controllers exhibited stronger HIV-specific cytotoxic responses than the progressors, and their CD8+T cells showed a miRNA (hsa-miR-10a-5p) significantly downregulated. When we transfected ex vivo CD8+ T cells from progressors with a synthetic miR-10a-5p inhibitor, miR-10a-5p levels decreased in 4 out of 6 progressors, correlating with an increase in HIV-specific cytotoxic responses. The effects of miR-10a-5p inhibition on HIV-specific CTL responses were modest, short-lived, and occurred before day seven after modulation. IL-4 and TNF-α levels strongly correlated with HIV-specific cytotoxic capacity. Thus, inhibition of miR-10a-5p enhanced HIV-specific CD8+ T cell capacity in progressors. Our pilot study proves the concept that miRNA modulation is a feasible strategy to combat HIV persistence by enhancing specific cytotoxic immune responses, which will inform new approaches for achieving an antiretroviral therapy-free HIV remission.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , MicroARNs , Linfocitos T CD8-positivos , Humanos , Interleucina-4/farmacología , MicroARNs/genética , MicroARNs/farmacología , Proyectos Piloto , Linfocitos T Citotóxicos , Factor de Necrosis Tumoral alfa/farmacología
6.
Nucleic Acids Res ; 49(D1): D1130-D1137, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-32990755

RESUMEN

The knowledge of the genetic variability of the local population is of utmost importance in personalized medicine and has been revealed as a critical factor for the discovery of new disease variants. Here, we present the Collaborative Spanish Variability Server (CSVS), which currently contains more than 2000 genomes and exomes of unrelated Spanish individuals. This database has been generated in a collaborative crowdsourcing effort collecting sequencing data produced by local genomic projects and for other purposes. Sequences have been grouped by ICD10 upper categories. A web interface allows querying the database removing one or more ICD10 categories. In this way, aggregated counts of allele frequencies of the pseudo-control Spanish population can be obtained for diseases belonging to the category removed. Interestingly, in addition to pseudo-control studies, some population studies can be made, as, for example, prevalence of pharmacogenomic variants, etc. In addition, this genomic data has been used to define the first Spanish Genome Reference Panel (SGRP1.0) for imputation. This is the first local repository of variability entirely produced by a crowdsourcing effort and constitutes an example for future initiatives to characterize local variability worldwide. CSVS is also part of the GA4GH Beacon network. CSVS can be accessed at: http://csvs.babelomics.org/.


Asunto(s)
Colaboración de las Masas , Bases de Datos Genéticas , Genética de Población/métodos , Genoma Humano , Programas Informáticos , Alelos , Mapeo Cromosómico , Exoma , Frecuencia de los Genes , Variación Genética , Genómica , Humanos , Internet , Medicina de Precisión/métodos , España
7.
Nature ; 583(7815): 265-270, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32581361

RESUMEN

Cancers arise through the acquisition of oncogenic mutations and grow by clonal expansion1,2. Here we reveal that most mutagenic DNA lesions are not resolved into a mutated DNA base pair within a single cell cycle. Instead, DNA lesions segregate, unrepaired, into daughter cells for multiple cell generations, resulting in the chromosome-scale phasing of subsequent mutations. We characterize this process in mutagen-induced mouse liver tumours and show that DNA replication across persisting lesions can produce multiple alternative alleles in successive cell divisions, thereby generating both multiallelic and combinatorial genetic diversity. The phasing of lesions enables accurate measurement of strand-biased repair processes, quantification of oncogenic selection and fine mapping of sister-chromatid-exchange events. Finally, we demonstrate that lesion segregation is a unifying property of exogenous mutagens, including UV light and chemotherapy agents in human cells and tumours, which has profound implications for the evolution and adaptation of cancer genomes.


Asunto(s)
Segregación Cromosómica/genética , Evolución Molecular , Genoma/genética , Neoplasias/genética , Alelos , Animales , Reparación del ADN , Replicación del ADN , Receptores ErbB/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , Ratones , Mutación , Neoplasias/patología , Selección Genética , Transducción de Señal , Intercambio de Cromátides Hermanas , Transcripción Genética , Quinasas raf/metabolismo , Proteínas ras/metabolismo
8.
Sci Rep ; 9(1): 10964, 2019 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-31358886

RESUMEN

The Viking Health Study Shetland is a population-based research cohort of 2,122 volunteer participants with ancestry from the Shetland Isles in northern Scotland. The high kinship and detailed phenotype data support a range of approaches for associating rare genetic variants, enriched in this isolate population, with quantitative traits and diseases. As an exemplar, the c.1750G > A; p.Gly584Ser variant within the coding sequence of the KCNH2 gene implicated in Long QT Syndrome (LQTS), which occurred once in 500 whole genome sequences from this population, was investigated. Targeted sequencing of the KCNH2 gene in family members of the initial participant confirmed the presence of the sequence variant and identified two further members of the same family pedigree who shared the variant. Investigation of these three related participants for whom single nucleotide polymorphism (SNP) array genotypes were available allowed a unique shared haplotype of 1.22 Mb to be defined around this locus. Searching across the full cohort for this haplotype uncovered two additional apparently unrelated individuals with no known genealogical connection to the original kindred. All five participants with the defined haplotype were shown to share the rare variant by targeted Sanger sequencing. If this result were verified in a healthcare setting, it would be considered clinically actionable, and has been actioned in relatives ascertained independently through clinical presentation. The General Practitioners of four study participants with the rare variant were alerted to the research findings by letters outlining the phenotype (prolonged electrocardiographic QTc interval). A lack of detectable haplotype sharing between c.1750G > A; p.Gly584Ser chromosomes from previously reported individuals from Finland and those in this study from Shetland suggests that this mutation has arisen more than once in human history. This study showcases the potential value of isolate population-based research resources for genomic medicine. It also illustrates some challenges around communication of actionable findings in research participants in this context.


Asunto(s)
Canal de Potasio ERG1/genética , Haplotipos , Síndrome de QT Prolongado/genética , Polimorfismo de Nucleótido Simple , Anciano , Estudios de Cohortes , Electrocardiografía , Femenino , Humanos , Síndrome de QT Prolongado/diagnóstico , Masculino , Persona de Mediana Edad , Linaje , Escocia
9.
Am J Hum Genet ; 103(6): 1038-1044, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30503519

RESUMEN

During genome replication, polymerase epsilon (Pol ε) acts as the major leading-strand DNA polymerase. Here we report the identification of biallelic mutations in POLE, encoding the Pol ε catalytic subunit POLE1, in 15 individuals from 12 families. Phenotypically, these individuals had clinical features closely resembling IMAGe syndrome (intrauterine growth restriction [IUGR], metaphyseal dysplasia, adrenal hypoplasia congenita, and genitourinary anomalies in males), a disorder previously associated with gain-of-function mutations in CDKN1C. POLE1-deficient individuals also exhibited distinctive facial features and variable immune dysfunction with evidence of lymphocyte deficiency. All subjects shared the same intronic variant (c.1686+32C>G) as part of a common haplotype, in combination with different loss-of-function variants in trans. The intronic variant alters splicing, and together the biallelic mutations lead to cellular deficiency of Pol ε and delayed S-phase progression. In summary, we establish POLE as a second gene in which mutations cause IMAGe syndrome. These findings add to a growing list of disorders due to mutations in DNA replication genes that manifest growth restriction alongside adrenal dysfunction and/or immunodeficiency, consolidating these as replisome phenotypes and highlighting a need for future studies to understand the tissue-specific development roles of the encoded proteins.


Asunto(s)
Insuficiencia Suprarrenal/genética , ADN Polimerasa II/genética , Retardo del Crecimiento Fetal/genética , Mutación/genética , Osteocondrodisplasias/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Anomalías Urogenitales/genética , Adolescente , Adulto , Alelos , Niño , Preescolar , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Replicación del ADN/genética , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Fenotipo , Adulto Joven
10.
Am J Hum Genet ; 103(2): 213-220, 2018 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-30075112

RESUMEN

Pathogenic variants in BRCA1 or BRCA2 are identified in ∼20% of families with multiple individuals affected by early-onset breast and/or ovarian cancer. Extensive searches for additional highly penetrant genes or alternative mutational mechanisms altering BRCA1 or BRCA2 have not explained the missing heritability. Here, we report a dominantly inherited 5' UTR variant associated with epigenetic BRCA1 silencing due to promoter hypermethylation in two families affected by breast and ovarian cancer. BRCA1 promoter methylation of ten CpG dinucleotides in families who are affected by breast and/or ovarian cancer but do not have germline BRCA1 or BRCA2 pathogenic variants was assessed by pyrosequencing and clonal bisulfite sequencing. RNA and DNA sequencing of BRCA1 from lymphocytes was undertaken to establish allelic expression and the presence of germline variants. BRCA1 promoter hypermethylation was identified in 2 of 49 families in which multiple women are affected by grade 3 breast cancer or high-grade serous ovarian cancer. Soma-wide BRCA1 promoter hypermethylation was confirmed in blood, buccal mucosa, and hair follicles. Pyrosequencing showed that DNA was ∼50% methylated, consistent with the silencing of one allele, which was confirmed by clonal bisulfite sequencing. RNA sequencing revealed the allelic loss of BRCA1 expression in both families and that this loss of expression segregated with the heterozygous variant c.-107A>T in the BRCA1 5' UTR. Our results establish a mechanism whereby familial breast and ovarian cancer is caused by an in cis 5' UTR variant associated with epigenetic silencing of the BRCA1 promoter in two independent families. We propose that methylation analyses be undertaken to establish the frequency of this mechanism in families affected by early-onset breast and/or ovarian cancer without a BRCA1 or BRCA2 pathogenic variant.


Asunto(s)
Regiones no Traducidas 5'/genética , Proteína BRCA1/genética , Neoplasias de la Mama/genética , Metilación de ADN/genética , Mutación de Línea Germinal/genética , Neoplasias Ováricas/genética , Adulto , Anciano , Anciano de 80 o más Años , Proteína BRCA2/genética , Epigénesis Genética/genética , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Persona de Mediana Edad , Regiones Promotoras Genéticas/genética
11.
J Hepatol ; 69(4): 840-850, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29958939

RESUMEN

BACKGROUND & AIMS: Carcinogen-induced mouse models of liver cancer are used extensively to study the pathogenesis of the disease and are critical for validating candidate therapeutics. These models can recapitulate molecular and histological features of human disease. However, it is not known if the genomic alterations driving these mouse tumour genomes are comparable to those found in human tumours. Herein, we provide a detailed genomic characterisation of tumours from a commonly used mouse model of hepatocellular carcinoma (HCC). METHODS: We analysed whole exome sequences of liver tumours arising in mice exposed to diethylnitrosamine (DEN). Mutational signatures were compared between liver tumours from DEN-treated and untreated mice, and human HCCs. RESULTS: DEN-initiated tumours had a high, uniform number of somatic single nucleotide variants (SNVs), with few insertions, deletions or copy number alterations, consistent with the known genotoxic action of DEN. Exposure of hepatocytes to DEN left a reproducible mutational imprint in resulting tumour exomes which we could computationally reconstruct using six known COSMIC mutational signatures. The tumours carried a high diversity of low-incidence, non-synonymous point mutations in many oncogenes and tumour suppressors, reflecting the stochastic introduction of SNVs into the hepatocyte genome by the carcinogen. We identified four recurrently mutated genes that were putative oncogenic drivers of HCC in this model. Every neoplasm carried activating hotspot mutations either in codon 61 of Hras, in codon 584 of Braf or in codon 254 of Egfr. Truncating mutations of Apc occurred in 21% of neoplasms, which were exclusively carcinomas supporting a role for deregulation of Wnt/ß-catenin signalling in cancer progression. CONCLUSIONS: Our study provides detailed insight into the mutational landscape of tumours arising in a commonly used carcinogen model of HCC, facilitating the future use of this model to better understand the human disease. LAY SUMMARY: Mouse models are widely used to study the biology of cancer and to test potential therapies. Herein, we have described the mutational landscape of tumours arising in a carcinogen-induced mouse model of liver cancer. Since cancer is a disease caused by genomic alterations, information about the patterns and types of mutations in the tumours in this mouse model should facilitate its use to study human liver cancer.


Asunto(s)
Neoplasias Hepáticas Experimentales/genética , Mutación , Animales , Variaciones en el Número de Copia de ADN , Dietilnitrosamina , Modelos Animales de Enfermedad , Exoma , Genes ras , Neoplasias Hepáticas Experimentales/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C3H
12.
Nat Commun ; 7: 12339, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27531712

RESUMEN

Long non-coding RNAs (lncRNAs) constitute a large, yet mostly uncharacterized fraction of the mammalian transcriptome. Such characterization requires a comprehensive, high-quality annotation of their gene structure and boundaries, which is currently lacking. Here we describe RACE-Seq, an experimental workflow designed to address this based on RACE (rapid amplification of cDNA ends) and long-read RNA sequencing. We apply RACE-Seq to 398 human lncRNA genes in seven tissues, leading to the discovery of 2,556 on-target, novel transcripts. About 60% of the targeted loci are extended in either 5' or 3', often reaching genomic hallmarks of gene boundaries. Analysis of the novel transcripts suggests that lncRNAs are as long, have as many exons and undergo as much alternative splicing as protein-coding genes, contrary to current assumptions. Overall, we show that RACE-Seq is an effective tool to annotate an organism's deep transcriptome, and compares favourably to other targeted sequencing techniques.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Reacción en Cadena de la Polimerasa/métodos , ARN Largo no Codificante/genética , Análisis de Secuencia de ARN/métodos , Exones/genética , Sitios Genéticos , Humanos , Anotación de Secuencia Molecular , Especificidad de Órganos/genética , Prueba de Estudio Conceptual , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sitios de Empalme de ARN/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma/genética
13.
Diabetologia ; 59(4): 755-65, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26813254

RESUMEN

AIMS/HYPOTHESIS: A strategy to enhance pancreatic islet functional beta cell mass (BCM) while restraining inflammation, through the manipulation of molecular and cellular targets, would provide a means to counteract the deteriorating glycaemic control associated with diabetes mellitus. The aims of the current study were to investigate the therapeutic potential of such a target, the islet-enriched and diabetes-linked transcription factor paired box 4 (PAX4), to restrain experimental autoimmune diabetes (EAD) in the RIP-B7.1 mouse model background and to characterise putative cellular mechanisms associated with preserved BCM. METHODS: Two groups of RIP-B7.1 mice were genetically engineered to: (1) conditionally express either PAX4 (BPTL) or its diabetes-linked mutant variant R129W (mutBPTL) using doxycycline (DOX); and (2) constitutively express luciferase in beta cells through the use of RIP. Mice were treated or not with DOX, and EAD was induced by immunisation with a murine preproinsulin II cDNA expression plasmid. The development of hyperglycaemia was monitored for up to 4 weeks following immunisation and alterations in the BCM were assessed weekly by non-invasive in vivo bioluminescence intensity (BLI). In parallel, BCM, islet cell proliferation and apoptosis were evaluated by immunocytochemistry. Alterations in PAX4- and PAX4R129W-mediated islet gene expression were investigated by microarray profiling. PAX4 preservation of endoplasmic reticulum (ER) homeostasis was assessed using thapsigargin, electron microscopy and intracellular calcium measurements. RESULTS: PAX4 overexpression blunted EAD, whereas the diabetes-linked mutant variant PAX4R129W did not convey protection. PAX4-expressing islets exhibited reduced insulitis and decreased beta cell apoptosis, correlating with diminished DNA damage and increased islet cell proliferation. Microarray profiling revealed that PAX4 but not PAX4R129W targeted expression of genes implicated in cell cycle and ER homeostasis. Consistent with the latter, islets overexpressing PAX4 were protected against thapsigargin-mediated ER-stress-related apoptosis. Luminal swelling associated with ER stress induced by thapsigargin was rescued in PAX4-overexpressing beta cells, correlating with preserved cytosolic calcium oscillations in response to glucose. In contrast, RNA interference mediated repression of PAX4-sensitised MIN6 cells to thapsigargin cell death. CONCLUSIONS/INTERPRETATION: The coordinated regulation of distinct cellular pathways particularly related to ER homeostasis by PAX4 not achieved by the mutant variant PAX4R129W alleviates beta cell degeneration and protects against diabetes mellitus. The raw data for the RNA microarray described herein are accessible in the Gene Expression Omnibus database under accession number GSE62846.


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/metabolismo , Factores de Transcripción Paired Box/metabolismo , Animales , Apoptosis/fisiología , Proliferación Celular/fisiología , Diabetes Mellitus Tipo 1/patología , Femenino , Células Secretoras de Insulina/patología , Masculino , Ratones , Ratones Mutantes
14.
Mol Biol Evol ; 33(5): 1205-18, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26764160

RESUMEN

Recent results from large-scale genomic projects suggest that allele frequencies, which are highly relevant for medical purposes, differ considerably across different populations. The need for a detailed catalog of local variability motivated the whole-exome sequencing of 267 unrelated individuals, representative of the healthy Spanish population. Like in other studies, a considerable number of rare variants were found (almost one-third of the described variants). There were also relevant differences in allelic frequencies in polymorphic variants, including ∼10,000 polymorphisms private to the Spanish population. The allelic frequencies of variants conferring susceptibility to complex diseases (including cancer, schizophrenia, Alzheimer disease, type 2 diabetes, and other pathologies) were overall similar to those of other populations. However, the trend is the opposite for variants linked to Mendelian and rare diseases (including several retinal degenerative dystrophies and cardiomyopathies) that show marked frequency differences between populations. Interestingly, a correspondence between differences in allelic frequencies and disease prevalence was found, highlighting the relevance of frequency differences in disease risk. These differences are also observed in variants that disrupt known drug binding sites, suggesting an important role for local variability in population-specific drug resistances or adverse effects. We have made the Spanish population variant server web page that contains population frequency information for the complete list of 170,888 variant positions we found publicly available (http://spv.babelomics.org/), We show that it if fundamental to determine population-specific variant frequencies to distinguish real disease associations from population-specific polymorphisms.


Asunto(s)
Enfermedad/genética , Exoma , Bases de Datos de Ácidos Nucleicos , Resistencia a Medicamentos/genética , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Variación Genética , Genética de Población/métodos , Humanos , Internet , Pruebas de Farmacogenómica , Polimorfismo Genético , España/epidemiología
15.
Bioinformatics ; 31(1): 114-5, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25173419

RESUMEN

MOTIVATION: The Oxford Nanopore MinION device represents a unique sequencing technology. As a mobile sequencing device powered by the USB port of a laptop, the MinION has huge potential applications. To enable these applications, the bioinformatics community will need to design and build a suite of tools specifically for MinION data. RESULTS: Here we present poRe, a package for R that enables users to manipulate, organize, summarize and visualize MinION nanopore sequencing data. As a package for R, poRe has been tested on Windows, Linux and MacOSX. Crucially, the Windows version allows users to analyse MinION data on the Windows laptop attached to the device. AVAILABILITY AND IMPLEMENTATION: poRe is released as a package for R at http://sourceforge.net/projects/rpore/. A tutorial and further information are available at https://sourceforge.net/p/rpore/wiki/Home/.


Asunto(s)
Biología Computacional/métodos , Nanoporos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Análisis de Secuencia de ADN/normas
16.
Nat Commun ; 5: 5125, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25254650

RESUMEN

There is a critical need for standard approaches to assess, report and compare the technical performance of genome-scale differential gene expression experiments. Here we assess technical performance with a proposed standard 'dashboard' of metrics derived from analysis of external spike-in RNA control ratio mixtures. These control ratio mixtures with defined abundance ratios enable assessment of diagnostic performance of differentially expressed transcript lists, limit of detection of ratio (LODR) estimates and expression ratio variability and measurement bias. The performance metrics suite is applicable to analysis of a typical experiment, and here we also apply these metrics to evaluate technical performance among laboratories. An interlaboratory study using identical samples shared among 12 laboratories with three different measurement processes demonstrates generally consistent diagnostic power across 11 laboratories. Ratio measurement variability and bias are also comparable among laboratories for the same measurement process. We observe different biases for measurement processes using different mRNA-enrichment protocols.


Asunto(s)
Perfilación de la Expresión Génica/métodos , ARN Mensajero/genética , Perfilación de la Expresión Génica/normas , Humanos , Estándares de Referencia , Reproducibilidad de los Resultados
17.
Mol Syst Biol ; 10: 752, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25261458

RESUMEN

Recent genomic projects have revealed the existence of an unexpectedly large amount of deleterious variability in the human genome. Several hypotheses have been proposed to explain such an apparently high mutational load. However, the mechanisms by which deleterious mutations in some genes cause a pathological effect but are apparently innocuous in other genes remain largely unknown. This study searched for deleterious variants in the 1,000 genomes populations, as well as in a newly sequenced population of 252 healthy Spanish individuals. In addition, variants causative of monogenic diseases and somatic variants from 41 chronic lymphocytic leukaemia patients were analysed. The deleterious variants found were analysed in the context of the interactome to understand the role of network topology in the maintenance of the observed mutational load. Our results suggest that one of the mechanisms whereby the effect of these deleterious variants on the phenotype is suppressed could be related to the configuration of the protein interaction network. Most of the deleterious variants observed in healthy individuals are concentrated in peripheral regions of the interactome, in combinations that preserve their connectivity, and have a marginal effect on interactome integrity. On the contrary, likely pathogenic cancer somatic deleterious variants tend to occur in internal regions of the interactome, often with associated structural consequences. Finally, variants causative of monogenic diseases seem to occupy an intermediate position. Our observations suggest that the real pathological potential of a variant might be more a systems property rather than an intrinsic property of individual proteins.


Asunto(s)
Variación Genética , Genética de Población , Genoma Humano , Genómica/métodos , Mapas de Interacción de Proteínas , Alelos , Exoma , Biblioteca de Genes , Humanos , Modelos Genéticos , Mutación , Fenotipo , Conformación Proteica , Análisis de Secuencia de ADN , Población Blanca/genética
18.
Mol Genet Genomic Med ; 2(2): 124-33, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24689075

RESUMEN

Bardet-Biedl syndrome (BBS) is a model ciliopathy characterized by a wide range of clinical variability. The heterogeneity of this condition is reflected in the number of underlying gene defects and the epistatic interactions between the proteins encoded. BBS is generally inherited in an autosomal recessive trait. However, in some families, mutations across different loci interact to modulate the expressivity of the phenotype. In order to investigate the magnitude of epistasis in one BBS family with remarkable intrafamilial phenotypic variability, we designed an exome sequencing-based approach using SOLID 5500xl platform. This strategy allowed the reliable detection of the primary causal mutations in our family consisting of two novel compound heterozygous mutations in McKusick-Kaufman syndrome (MKKS) gene (p.D90G and p.V396F). Additionally, exome sequencing enabled the detection of one novel heterozygous NPHP4 variant which is predicted to activate a cryptic acceptor splice site and is only present in the most severely affected patient. Here, we provide an exome sequencing analysis of a BBS family and show the potential utility of this tool, in combination with network analysis, to detect disease-causing mutations and second-site modifiers. Our data demonstrate how next-generation sequencing (NGS) can facilitate the dissection of epistatic phenomena, and shed light on the genetic basis of phenotypic variability.

19.
Bioinformatics ; 30(12): 1767-8, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24578402

RESUMEN

MOTIVATION: Targeted enrichment sequencing by next-generation sequencing is a common approach to interrogate specific loci or the whole exome in the human genome. The efficiency and the lack of bias in the enrichment process need to be assessed as a quality control step before performing downstream analysis of the sequence data. Tools that can report on the sensitivity, specificity, uniformity and other enrichment-specific features are needed. RESULTS: We have implemented the next-generation sequencing data Capture Assessment Tool (ngsCAT), a tool that takes the information of the mapped reads and the coordinates of the targeted regions as input files, and generates a report with metrics and figures that allows the evaluation of the efficiency of the enrichment process. The tool can also take as input the information of two samples allowing the comparison of two different experiments. AVAILABILITY AND IMPLEMENTATION: Documentation and downloads for ngsCAT can be found at http://www.bioinfomgp.org/ngscat.


Asunto(s)
Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Exoma , Humanos
20.
Mol Vis ; 19: 2187-95, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24227914

RESUMEN

PURPOSE: Retinitis pigmentosa (RP) is an inherited retinal dystrophy characterized by extreme genetic and clinical heterogeneity. Thus, the diagnosis is not always easily performed due to phenotypic and genetic overlap. Current clinical practices have focused on the systematic evaluation of a set of known genes for each phenotype, but this approach may fail in patients with inaccurate diagnosis or infrequent genetic cause. In the present study, we investigated the genetic cause of autosomal recessive RP (arRP) in a Spanish family in which the causal mutation has not yet been identified with primer extension technology and resequencing. METHODS: We designed a whole-exome sequencing (WES)-based approach using NimbleGen SeqCap EZ Exome V3 sample preparation kit and the SOLiD 5500×l next-generation sequencing platform. We sequenced the exomes of both unaffected parents and two affected siblings. Exome analysis resulted in the identification of 43,204 variants in the index patient. All variants passing filter criteria were validated with Sanger sequencing to confirm familial segregation and absence in the control population. In silico prediction tools were used to determine mutational impact on protein function and the structure of the identified variants. RESULTS: Novel Usher syndrome type 2A (USH2A) compound heterozygous mutations, c.4325T>C (p.F1442S) and c.15188T>G (p.L5063R), located in exons 20 and 70, respectively, were identified as probable causative mutations for RP in this family. Family segregation of the variants showed the presence of both mutations in all affected members and in two siblings who were apparently asymptomatic at the time of family ascertainment. Clinical reassessment confirmed the diagnosis of RP in these patients. CONCLUSIONS: Using WES, we identified two heterozygous novel mutations in USH2A as the most likely disease-causing variants in a Spanish family diagnosed with arRP in which the cause of the disease had not yet been identified with commonly used techniques. Our data reinforce the clinical role of WES in the molecular diagnosis of highly heterogeneous genetic diseases where conventional genetic approaches have previously failed in achieving a proper diagnosis.


Asunto(s)
Exoma/genética , Proteínas de la Matriz Extracelular/genética , Genes Recesivos/genética , Retinitis Pigmentosa/complicaciones , Retinitis Pigmentosa/genética , Síndromes de Usher/complicaciones , Síndromes de Usher/genética , Adulto , Secuencia de Bases , Segregación Cromosómica/genética , Análisis Mutacional de ADN , Exones/genética , Proteínas de la Matriz Extracelular/química , Femenino , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Mutación , Linaje , Polimorfismo de Nucleótido Simple/genética , Reproducibilidad de los Resultados , Hermanos , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA