Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(40): e2204509119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161894

RESUMEN

Multiple sclerosis (MS), an autoimmune-driven, inflammatory demyelinating disease of the central nervous system (CNS), causes irreversible accumulation of neurological deficits to a variable extent. Although there are potent disease-modifying agents for its initial relapsing-remitting phase, immunosuppressive therapies show limited efficacy in secondary progressive MS (SPMS). Although modulation of sphingosine-1 phosphate receptors has proven beneficial during SPMS, the underlying mechanisms are poorly understood. In this project, we followed the hypothesis that siponimod, a sphingosine-1 phosphate receptor modulator, exerts protective effects by direct modulation of glia cell function (i.e., either astrocytes, microglia, or oligodendrocytes). To this end, we used the toxin-mediated, nonautoimmune MS animal model of cuprizone (Cup) intoxication. On the histological level, siponimod ameliorated cuprizone-induced oligodendrocyte degeneration, demyelination, and axonal injury. Protective effects were evident as well using GE180 translocator protein 18-kDa (TSPO) imaging with positron emission tomography (PET)/computed tomography (CT) imaging or next generation sequencing (NGS). Siponimod also ameliorated the cuprizone-induced pathologies in Rag1-deficient mice, demonstrating that the protection is independent of T and B cell modulation. Proinflammatory responses in primary mixed astrocytes/microglia cell cultures were not modulated by siponimod, suggesting that other cell types than microglia and astrocytes are targeted. Of note, siponimod completely lost its protective effects in S1pr5-deficient mice, suggesting direct protection of degenerating oligodendrocytes. Our study demonstrates that siponimod exerts protective effects in the brain in a S1PR5-dependent manner. This finding is not just relevant in the context of MS but in other neuropathologies as well, characterized by a degeneration of the axon-myelin unit.


Asunto(s)
Azetidinas , Compuestos de Bencilo , Esclerosis Múltiple Crónica Progresiva , Oligodendroglía , Receptores de Esfingosina-1-Fosfato , Esfingosina , Animales , Azetidinas/farmacología , Compuestos de Bencilo/farmacología , Cuprizona , Modelos Animales de Enfermedad , Proteínas de Homeodominio/genética , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple Crónica Progresiva/tratamiento farmacológico , Oligodendroglía/efectos de los fármacos , Esfingosina/farmacología , Esfingosina/uso terapéutico , Receptores de Esfingosina-1-Fosfato/metabolismo
2.
Glia ; 69(4): 925-942, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33245604

RESUMEN

The loss of myelinating oligodendrocytes is a key characteristic of many neurological diseases, including Multiple Sclerosis (MS). In progressive MS, where effective treatment options are limited, peripheral immune cells can be found at the site of demyelination and are suggested to play a functional role during disease progression. In this study, we hypothesize that metabolic oligodendrocyte injury, caused by feeding the copper chelator cuprizone, is a potent trigger for peripheral immune cell recruitment into the central nervous system (CNS). We used immunohistochemistry and flow cytometry to evaluate the composition, density, and activation status of infiltrating T lymphocytes in cuprizone-intoxicated mice and post-mortem progressive MS tissues. Our results demonstrate a predominance of CD8+ T cells along with high proliferation rates and cytotoxic granule expression, indicating an antigenic and pro-inflammatory milieu in the CNS of cuprizone-intoxicated mice. Numbers of recruited T cells and the composition of lymphocytic infiltrates in cuprizone-intoxicated mice were found to be comparable to those found in progressive MS lesions. Finally, amelioration of the cuprizone-induced pathology by treating mice with laquinimod significantly reduces the number of recruited T cells. Overall, this study provides strong evidence that toxic demyelination is a sufficient trigger for T cells to infiltrate the demyelinated CNS. Further investigation of the mode of action and functional consequence of T cell recruitment might offer promising new therapeutic approaches for progressive MS.


Asunto(s)
Cuprizona , Enfermedades Desmielinizantes , Animales , Linfocitos T CD8-positivos , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Oligodendroglía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA