Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 264: 115946, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38043491

RESUMEN

Pteridine reductase 1 (PTR1) is a catalytic protein belonging to the folate metabolic pathway in Trypanosmatidic parasites. PTR1 is a known target for the medicinal chemistry development of antiparasitic agents against Trypanosomiasis and Leishmaniasis. In previous studies, new nitro derivatives were elaborated as PTR1 inhibitors. The compounds showing a diamino-pyrimidine core structure were previously developed but they showed limited efficacy. Therefore, a new class of phenyl-, heteroaryl- and benzyloxy-nitro derivatives based on the 2-nitroethyl-2,4,6-triaminopyrimidine scaffold were designed and tested. The compounds were assayed for their ability to inhibit T. brucei and L. major PTR1 enzymes and for their antiparasitic activity towards T. brucei and L. infantum parasites. To understand the structure-activity relationships of the compounds against TbPTR1, the X-ray crystallographic structure of the 2,4,6-triaminopyrimidine (TAP) was obtained and molecular modelling studies were performed. As a next step, only the most effective compounds against T. brucei were then tested against the amastigote cellular stage of T. cruzi, searching for a broad-spectrum antiprotozoal agent. An early ADME-Tox profile evaluation was performed. The early toxicity profile of this class of compounds was investigated by measuring their inhibition of hERG and five cytochrome P450 isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4), cytotoxicity towards A549 cells and mitochondrial toxicity. Pharmacokinetic studies (SNAP-PK) were performed on selected compounds using hydroxypropyl-ß-cyclodextrins (50 % w/v) to preliminarily study their plasma concentration when administered per os at a dose of 20 mg/kg. Compound 1p, showed the best pharmacodynamic and pharmacokinetic properties, can be considered a good candidate for further bioavailability and efficacy studies.


Asunto(s)
Antiprotozoarios , Enfermedad de Chagas , Trypanosoma brucei brucei , Trypanosoma cruzi , Humanos , Relación Estructura-Actividad , Antiprotozoarios/química , Modelos Moleculares , Antiparasitarios/farmacología , Enfermedad de Chagas/tratamiento farmacológico
2.
J Med Chem ; 66(22): 15230-15255, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37921561

RESUMEN

Broad-spectrum anti-infective chemotherapy agents with activity against Trypanosomes, Leishmania, and Mycobacterium tuberculosis species were identified from a high-throughput phenotypic screening program of the 456 compounds belonging to the Ty-Box, an in-house industry database. Compound characterization using machine learning approaches enabled the identification and synthesis of 44 compounds with broad-spectrum antiparasitic activity and minimal toxicity against Trypanosoma brucei, Leishmania Infantum, and Trypanosoma cruzi. In vitro studies confirmed the predictive models identified in compound 40 which emerged as a new lead, featured by an innovative N-(5-pyrimidinyl)benzenesulfonamide scaffold and promising low micromolar activity against two parasites and low toxicity. Given the volume and complexity of data generated by the diverse high-throughput screening assays performed on the compounds of the Ty-Box library, the chemoinformatic and machine learning tools enabled the selection of compounds eligible for further evaluation of their biological and toxicological activities and aided in the decision-making process toward the design and optimization of the identified lead.


Asunto(s)
Leishmania infantum , Trypanosoma brucei brucei , Trypanosoma cruzi , Ensayos Analíticos de Alto Rendimiento , Antiparasitarios
3.
Cell Death Dis ; 14(11): 726, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938564

RESUMEN

Triple-negative breast cancer (TNBC) is a subtype of breast cancer associated with metastasis, high recurrence rate, and poor survival. The basic helix-loop-helix transcription factor SHARP1 (Split and Hairy-related Protein 1) has been identified as a suppressor of the metastatic behavior of TNBC. SHARP1 blocks the invasive phenotype of TNBC by inhibiting hypoxia-inducible factors and its loss correlates with poor survival of breast cancer patients. Here, we show that SHARP1 is an unstable protein that is targeted for proteasomal degradation by the E3 ubiquitin ligase complex SCFßTrCP. SHARP1 recruits ßTrCP via a phosphodegron encompassing Ser240 and Glu245 which are required for SHARP1 ubiquitylation and degradation. Furthermore, mice injected with TNBC cells expressing the non-degradable SHARP1(S240A/E245A) mutant display reduced tumor growth and increased tumor-free survival. Our study suggests that targeting the ßTrCP-dependent degradation of SHARP1 represents a therapeutic strategy in TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/genética , Proteínas con Repetición de beta-Transducina/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Fenotipo , Sinapsinas
4.
Elife ; 112022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36475542

RESUMEN

Drugs that target human thymidylate synthase (hTS), a dimeric enzyme, are widely used in anticancer therapy. However, treatment with classical substrate-site-directed TS inhibitors induces over-expression of this protein and development of drug resistance. We thus pursued an alternative strategy that led us to the discovery of TS-dimer destabilizers. These compounds bind at the monomer-monomer interface and shift the dimerization equilibrium of both the recombinant and the intracellular protein toward the inactive monomers. A structural, spectroscopic, and kinetic investigation has provided evidence and quantitative information on the effects of the interaction of these small molecules with hTS. Focusing on the best among them, E7, we have shown that it inhibits hTS in cancer cells and accelerates its proteasomal degradation, thus causing a decrease in the enzyme intracellular level. E7 also showed a superior anticancer profile to fluorouracil in a mouse model of human pancreatic and ovarian cancer. Thus, over sixty years after the discovery of the first TS prodrug inhibitor, fluorouracil, E7 breaks the link between TS inhibition and enhanced expression in response, providing a strategy to fight drug-resistant cancers.


Asunto(s)
Neoplasias Ováricas , Timidilato Sintasa , Femenino , Animales , Ratones , Humanos , Sitios de Unión , Timidilato Sintasa/química , Timidilato Sintasa/metabolismo , Fluorouracilo/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología
5.
J Med Chem ; 65(13): 9011-9033, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35675511

RESUMEN

The optimization of compounds with multiple targets is a difficult multidimensional problem in the drug discovery cycle. Here, we present a systematic, multidisciplinary approach to the development of selective antiparasitic compounds. Computational fragment-based design of novel pteridine derivatives along with iterations of crystallographic structure determination allowed for the derivation of a structure-activity relationship for multitarget inhibition. The approach yielded compounds showing apparent picomolar inhibition of T. brucei pteridine reductase 1 (PTR1), nanomolar inhibition of L. major PTR1, and selective submicromolar inhibition of parasite dihydrofolate reductase (DHFR) versus human DHFR. Moreover, by combining design for polypharmacology with a property-based on-parasite optimization, we found three compounds that exhibited micromolar EC50 values against T. brucei brucei while retaining their target inhibition. Our results provide a basis for the further development of pteridine-based compounds, and we expect our multitarget approach to be generally applicable to the design and optimization of anti-infective agents.


Asunto(s)
Leishmania major , Oxidorreductasas , Tetrahidrofolato Deshidrogenasa , Trypanosoma brucei brucei , Leishmania major/efectos de los fármacos , Leishmania major/enzimología , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/metabolismo , Pteridinas/química , Pteridinas/farmacología , Relación Estructura-Actividad , Tetrahidrofolato Deshidrogenasa/metabolismo , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/enzimología
6.
Pharmaceutics ; 14(2)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35214125

RESUMEN

The transcriptional regulators YAP (Yes-associated protein) and TAZ (transcriptional co-activator with PDZ-binding motif) are the major downstream effectors in the Hippo pathway and are involved in cancer progression through modulation of the activity of TEAD (transcriptional enhanced associate domain) transcription factors. To exploit the advantages of drug repurposing in the search of new drugs, we developed a similar approach for the identification of new hits interfering with TEAD target gene expression. In our study, a 27-member in-house library was assembled, characterized, and screened for its cancer cell growth inhibition effect. In a secondary luciferase-based assay, only seven compounds confirmed their specific involvement in TEAD activity. IA5 bearing a p-quinoid structure reduced the cytoplasmic level of phosphorylated YAP and the YAP-TEAD complex transcriptional activity and reduced cancer cell growth. IA5 is a promising hit compound for TEAD activity modulator development.

7.
Pharmaceuticals (Basel) ; 14(12)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34959646

RESUMEN

Three open-source anti-kinetoplastid chemical boxes derived from a whole-cell phenotypic screening by GlaxoSmithKline (Tres Cantos Anti-Kinetoplastid Screening, TCAKS) were exploited for the discovery of a novel core structure inspiring new treatments of parasitic diseases targeting the trypansosmatidic pteridine reductase 1 (PTR1) and dihydrofolate reductase (DHFR) enzymes. In total, 592 compounds were tested through medium-throughput screening assays. A subset of 14 compounds successfully inhibited the enzyme activity in the low micromolar range of at least one of the enzymes from both Trypanosoma brucei and Lesihmania major parasites (pan-inhibitors), or from both PTR1 and DHFR-TS of the same parasite (dual inhibitors). Molecular docking studies of the protein-ligand interaction focused on new scaffolds not reproducing the well-known antifolate core clearly explaining the experimental data. TCMDC-143249, classified as a benzenesulfonamide derivative by the QikProp descriptor tool, showed selective inhibition of PTR1 and growth inhibition of the kinetoplastid parasites in the 5 µM range. In our work, we enlarged the biological profile of the GSK Kinetobox and identified new core structures inhibiting selectively PTR1, effective against the kinetoplastid infectious protozoans. In perspective, we foresee the development of selective PTR1 and DHFR inhibitors for studies of drug combinations.

8.
Cancers (Basel) ; 13(9)2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33923290

RESUMEN

Combining drugs represent an approach to efficiently prevent and overcome drug resistance and to reduce toxicity; yet it is a highly challenging task, particularly if combinations of inhibitors of the same enzyme target are considered. To show that crystallographic and inhibition kinetic information can provide indicators of cancer cell growth inhibition by combinations of two anti-human thymidylate synthase (hTS) drugs, we obtained the X-ray crystal structure of the hTS:raltitrexed:5-fluorodeoxyuridine monophosphate (FdUMP) complex. Its analysis showed a ternary complex with both molecules strongly bound inside the enzyme catalytic cavity. The synergistic inhibition of hTS and its mechanistic rationale were consistent with the structural analysis. When administered in combination to A2780 and A2780/CP ovarian cancer cells, the two drugs inhibited ovarian cancer cell growth additively/synergistically. Together, these results support the idea that X-ray crystallography can provide structural indicators for designing combinations of hTS (or any other target)-directed drugs to accelerate preclinical research for therapeutic application.

9.
J Med Chem ; 64(6): 3204-3221, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33710891

RESUMEN

Drug-target interaction, cellular internalization, and target engagement should be addressed to design a lead with high chances of success in further optimization stages. Accordingly, we have designed conjugates of folic acid with anticancer peptides able to bind human thymidylate synthase (hTS) and enter cancer cells through folate receptor α (FRα) highly expressed by several cancer cells. Mechanistic analyses and molecular modeling simulations have shown that these conjugates bind the hTS monomer-monomer interface with affinities over 20 times larger than the enzyme active site. When tested on several cancer cell models, these conjugates exhibited FRα selectivity at nanomolar concentrations. A similar selectivity was observed when the conjugates were delivered in synergistic or additive combinations with anticancer agents. At variance with 5-fluorouracil and other anticancer drugs that target the hTS catalytic pocket, these conjugates do not induce overexpression of this protein and can thus help combating drug resistance associated with high hTS levels.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Ácido Fólico/análogos & derivados , Péptidos/química , Péptidos/farmacología , Timidilato Sintasa/antagonistas & inhibidores , Antineoplásicos/farmacocinética , Dominio Catalítico/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/farmacología , Femenino , Receptor 1 de Folato/metabolismo , Ácido Fólico/farmacocinética , Ácido Fólico/farmacología , Humanos , Modelos Moleculares , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Péptidos/farmacocinética , Timidilato Sintasa/metabolismo
10.
Chembiochem ; 22(10): 1800-1810, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33554411

RESUMEN

The observables associated with protein intrinsic fluorescence - spectra, time decays, anisotropies - offer opportunities to monitor in real time and non-invasively a protein's functional form and its interchange with other forms with different functions. We employed these observables to sketch the fluorometric profiles of two functional forms of human thymidylate synthase (hTS), a homodimeric enzyme crucial for cell proliferation and thus targeted by anticancer drugs. The protein takes an active and an inactive form. Stabilization of the latter by peptides that, unlike classical hTS inhibitors, bind it at the monomer/monomer interface offers an alternative inhibition mechanism that promises to avoid the onset of drug resistance in anticancer therapy. The fluorescence features depicted herein can be used as tools to identify and quantify each of the two protein forms in solution, thus making it possible to investigate the kinetic and thermodynamic aspects of the active/inactive conformational interchange. Two examples of fluorometrically monitored interconversion kinetics are provided.


Asunto(s)
Polarización de Fluorescencia , Timidilato Sintasa/química , Nucleótidos de Desoxiuracil/química , Nucleótidos de Desoxiuracil/metabolismo , Humanos , Cinética , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Estructura Cuaternaria de Proteína , Timidilato Sintasa/genética , Timidilato Sintasa/metabolismo
11.
Sci Rep ; 10(1): 12763, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32728062

RESUMEN

Bacteria are known to evade ß-lactam antibiotic action by producing ß-lactamases (BLs), including carbapenemases, which are able to hydrolyze nearly all available ß-lactams. The production of BLs represents one of the best known and most targeted mechanisms of resistance in bacteria. We have performed the parallel screening of commercially available compounds against a panel of clinically relevant BLs: class A CTX-M-15 and KPC-2, subclass B1 NDM-1 and VIM-2 MBLs, and the class C P. aeruginosa AmpC. The results show that all BLs prefer scaffolds having electron pair donors: KPC-2 is preferentially inhibited by sulfonamide and tetrazole-based derivatives, NDM-1 by compounds bearing a thiol, a thiosemicarbazide or thiosemicarbazone moiety, while VIM-2 by triazole-containing molecules. Few broad-spectrum BLs inhibitors were identified; among these, compound 40 potentiates imipenem activity against an NDM-1-producing E. coli clinical strain. The binary complexes of the two most promising compounds binding NDM-1 and VIM-2 were obtained at high resolution, providing strong insights to improve molecular docking simulations, especially regarding the interaction of MBLs with inhibitors.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Serina/química , Inhibidores de beta-Lactamasas/farmacología , Antibacterianos/farmacología , Cristalografía por Rayos X , Bases de Datos de Proteínas , Diseño de Fármacos , Descubrimiento de Drogas , Escherichia coli/efectos de los fármacos , Hidrólisis , Ligandos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química , Semicarbacidas/química , Compuestos de Sulfhidrilo/química , Sulfonamidas/química , Tetrazoles/química , beta-Lactamasas
12.
Eur J Med Chem ; 189: 112047, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31982652

RESUMEN

The LIBRA compound library is a collection of 522 non-commercial molecules contributed by various Italian academic laboratories. These compounds have been designed and synthesized during different medicinal chemistry programs and are hosted by the Italian Institute of Technology. We report the screening of the LIBRA compound library against Trypanosoma brucei and Leishmania major pteridine reductase 1, TbPTR1 and LmPTR1. Nine compounds were active against parasitic PTR1 and were selected for cell-based parasite screening, as single agents and in combination with methotrexate (MTX). The most interesting TbPTR1 inhibitor identified was 4-(benzyloxy)pyrimidine-2,6-diamine (LIB_66). Subsequently, six new LIB_66 derivatives were synthesized to explore its Structure-Activity-Relationship (SAR) and absorption, distribution, metabolism, excretion and toxicity (ADMET) properties. The results indicate that PTR1 has a preference to bind inhibitors, which resemble its biopterin/folic acid substrates, such as the 2,4-diaminopyrimidine derivatives.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Macrófagos/efectos de los fármacos , Oxidorreductasas/antagonistas & inhibidores , Pirimidinas/química , Trypanosoma brucei brucei/enzimología , Células A549 , Antimetabolitos Antineoplásicos/farmacología , Antineoplásicos/química , Proliferación Celular , Sinergismo Farmacológico , Inhibidores Enzimáticos/química , Humanos , Metotrexato/farmacología , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
13.
Molecules ; 24(19)2019 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-31561530

RESUMEN

Thymidylate synthase (TS) is a prominent drug target for different cancer types. However, the prolonged use of its classical inhibitors, substrate analogs that bind at the active site, leads to TS overexpression and drug resistance in the clinic. In the effort to identify anti-TS drugs with new modes of action and able to overcome platinum drug resistance in ovarian cancer, octapeptides with a new allosteric inhibition mechanism were identified as cancer cell growth inhibitors that do not cause TS overexpression. To improve the biological properties, 10 cyclic peptides (cPs) were designed from the lead peptides and synthesized. The cPs were screened for the ability to inhibit recombinant human thymidylate synthase (hTS), and peptide 7 was found to act as an allosteric inhibitor more potent than its parent open-chain peptide [Pro3]LR. In cytotoxicity studies on three human ovarian cancer cell lines, IGROV-1, A2780, and A2780/CP, peptide 5 and two other cPs, including 7, showed IC50 values comparable with those of the reference drug 5-fluorouracil, of the open-chain peptide [d-Gln4]LR, and of another seven prolyl derivatives of the lead peptide LR. These promising results indicate cP 7 as a possible lead compound to be chemically modified with the aim of improving both allosteric TS inhibitory activity and anticancer effectiveness.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Timidilato Sintasa/antagonistas & inhibidores , Sitio Alostérico , Sitios de Unión , Línea Celular , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Activación Enzimática , Humanos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad
14.
Biomolecules ; 9(4)2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30987202

RESUMEN

In human cells, thymidylate synthase (TS) provides the only source of 2'-deoxythymidyne-5'-monophosphate (dTMP), which is required for DNA biosynthesis. Because of its pivotal role, human TS (hTS) represents a validated target for anticancer chemotherapy. Nonetheless, the efficacy of drugs blocking the hTS active site has limitations due to the onset of resistance in cancer cells, requiring the identification of new strategies to effectively inhibit this enzyme. Human TS works as an obligate homodimer, making the inter-subunit interface an attractive targetable area. Here, we report the design and investigation of a new hTS variant, in which Gln62, located at the dimer interface, has been replaced by arginine in order to destabilize the enzyme quaternary assembly. The hTS Q62R variant has been characterized though kinetic assay, thermal denaturation analysis and X-ray crystallography. Our results provide evidence that hTS Q62R has a reduced melting temperature. The effective destabilization of the TS quaternary structure is also confirmed by structural analysis, showing that the introduced mutation induces a slight aperture of the hTS dimer. The generation of hTS variants having a more accessible interface area can facilitate the screening of interface-targeting molecules, providing key information for the rational design of innovative hTS interface inhibitors.


Asunto(s)
Mutación Missense , Multimerización de Proteína , Timidilato Sintasa/química , Estabilidad de Enzimas , Humanos , Desnaturalización Proteica , Dominios Proteicos , Timidilato Sintasa/genética
15.
SLAS Discov ; 24(3): 346-361, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30784368

RESUMEN

According to the World Health Organization, more than 1 billion people are at risk of or are affected by neglected tropical diseases. Examples of such diseases include trypanosomiasis, which causes sleeping sickness; leishmaniasis; and Chagas disease, all of which are prevalent in Africa, South America, and India. Our aim within the New Medicines for Trypanosomatidic Infections project was to use (1) synthetic and natural product libraries, (2) screening, and (3) a preclinical absorption, distribution, metabolism, and excretion-toxicity (ADME-Tox) profiling platform to identify compounds that can enter the trypanosomatidic drug discovery value chain. The synthetic compound libraries originated from multiple scaffolds with known antiparasitic activity and natural products from the Hypha Discovery MycoDiverse natural products library. Our focus was first to employ target-based screening to identify inhibitors of the protozoan Trypanosoma brucei pteridine reductase 1 ( TbPTR1) and second to use a Trypanosoma brucei phenotypic assay that made use of the T. brucei brucei parasite to identify compounds that inhibited cell growth and caused death. Some of the compounds underwent structure-activity relationship expansion and, when appropriate, were evaluated in a preclinical ADME-Tox assay panel. This preclinical platform has led to the identification of lead-like compounds as well as validated hits in the trypanosomatidic drug discovery value chain.


Asunto(s)
Descubrimiento de Drogas/métodos , Tripanocidas/análisis , Tripanocidas/farmacología , Tripanosomiasis/tratamiento farmacológico , Productos Biológicos/química , Humanos , Relación Estructura-Actividad , Tripanocidas/uso terapéutico
16.
Cancers (Basel) ; 10(9)2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30223434

RESUMEN

Drug repurposing is a fast and consolidated approach for the research of new active compounds bypassing the long streamline of the drug discovery process. Several drugs in clinical practice have been reported for modulating the major Hippo pathway's terminal effectors, namely YAP (Yes1-associated protein), TAZ (transcriptional co-activator with PDZ-binding motif) and TEAD (transcriptional enhanced associate domains), which are directly involved in the regulation of cell growth and tissue homeostasis. Since this pathway is known to have many cross-talking phenomena with cell signaling pathways, many efforts have been made to understand its importance in oncology. Moreover, this could be relevant to obtain new molecular tools and potential therapeutic assets. In this review, we discuss the main mechanisms of action of the best-known compounds, clinically approved or investigational drugs, able to cross-talk and modulate the Hippo pathway, as an attractive strategy for the discovery of new potential lead compounds.

17.
J Med Chem ; 61(16): 7374-7380, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30035541

RESUMEN

LR and [d-Gln4]LR peptides bind the monomer-monomer interface of human thymidylate synthase and inhibit cancer cell growth. Here, proline-mutated LR peptides were synthesized. Molecular dynamics calculations and circular dichroism spectra have provided a consistent picture of the conformational propensities of the [Pro n]-peptides. [Pro3]LR and [Pro4]LR show improved cell growth inhibition and similar intracellular protein modulation compared with LR. These represent a step forward to the identification of more rigid and metabolically stable peptides.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Péptidos/farmacología , Timidilato Sintasa/antagonistas & inhibidores , Antineoplásicos/química , Línea Celular Tumoral , Dicroismo Circular , Inhibidores Enzimáticos/química , Femenino , Humanos , Simulación de Dinámica Molecular , Mutación , Neoplasias Ováricas/patología , Péptidos/química , Péptidos/genética , Prolina/genética , Conformación Proteica , Timidilato Sintasa/genética , Timidilato Sintasa/metabolismo
18.
Eur J Med Chem ; 155: 229-243, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29886325

RESUMEN

Recently we identified cycloguanil-like dihydrotriazine derivatives, which provided host-factor directed antiviral activity against influenza viruses and respiratory syncytial virus (RSV), by targeting the human dihydrofolate reductase (hDHFR) enzyme. In this context we deemed interesting to further investigate the structure activity relationship (SAR) of our first series of cycloguanil-like dihydrotriazines, designing two novel azaspiro dihydrotriazine scaffolds. The present study allowed the exploration of the potential chemical space, around these new scaffolds, that are well tolerated for maintaining the antiviral effect by means of interaction with the hDHFR enzyme. The new derivatives confirmed their inhibitory profile against influenza viruses, especially type B. In particular, the two best compounds shared potent antiviral activity (4: EC50 = 0.29 µM; 6: EC50 = 0.19 µM), which was comparable to that of zanamivir (EC50 = 0.14 µM), and better than that of ribavirin (EC50 = 3.2 µM). In addition, these two compounds proved to be also effective against RSV (4: EC50 = 0.40 µM, SI ≥ 250; 6: EC50 = 1.8 µM, SI ≥ 56), surpassing the potency and selectivity index (SI) of ribavirin (EC50 = 5.8 µM, SI > 43). By a perspective of these results, the above adequately substituted azaspiro dihydrotriazines may represent valuable hit compounds worthy of further structural optimization to develop improved host DHFR-directed antiviral agents.


Asunto(s)
Antivirales/farmacología , Compuestos Aza/farmacología , Antagonistas del Ácido Fólico/farmacología , Orthomyxoviridae/efectos de los fármacos , Compuestos de Espiro/farmacología , Tetrahidrofolato Deshidrogenasa/metabolismo , Triazinas/farmacología , Antivirales/síntesis química , Antivirales/química , Compuestos Aza/síntesis química , Compuestos Aza/química , Relación Dosis-Respuesta a Droga , Antagonistas del Ácido Fólico/síntesis química , Antagonistas del Ácido Fólico/química , Modelos Moleculares , Estructura Molecular , Orthomyxoviridae/enzimología , Compuestos de Espiro/síntesis química , Compuestos de Espiro/química , Relación Estructura-Actividad , Triazinas/síntesis química , Triazinas/química
19.
ACS Med Chem Lett ; 9(1): 45-50, 2018 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-29348810

RESUMEN

Bacterial resistance has become a worldwide concern after the emergence of metallo-ß-lactamases (MBLs). They represent one of the major mechanisms of bacterial resistance against beta-lactam antibiotics. Among MBLs, New Delhi metallo-ß-lactamase-1 NDM-1, the most prevalent type, is extremely efficient in inactivating nearly all-available antibiotics including last resort carbapenems. No inhibitors for NDM-1 are currently available in therapy, making the spread of NDM-1 producing bacterial strains a serious menace. With this perspective, we performed a structure-based in silico screening of a commercially available library using FLAPdock and identified several, non-ß-lactam derivatives as promising candidates active against NDM-1. The binding affinities of the highest scoring hits were measured in vitro revealing, for some of them, low micromolar affinity toward NDM-1. For the best inhibitors, efficacy against resistant bacterial strains overexpressing NDM-1 was validated, confirming their favorable synergistic effect in combination with the carbapenem Meropenem.

20.
Biomed Opt Express ; 8(11): 5191-5205, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29188113

RESUMEN

This paper reports the experimental assessment of an automated optical assay based on label free optical fiber optrodes for the fast detection of class C ß-lactamases (AmpC BLs), actually considered as one of the most important sources of resistance to ß-lactams antibiotics expressed by resistant bacteria. Reflection-type long period fiber gratings (RT-LPG) have been used as highly sensitive label free optrodes, while a higher affine boronic acid-based ligand was here selected to enhance the overall assay performances compared to those obtained in our first demonstration. In order to prove the feasibility analysis towards a fully automated optical assay, an engineered system was developed to simultaneously manipulate and interrogate multiple fiber optic optrodes in the different phases of the assay. The automated system tested in AmpC solutions at increasing concentrations demonstrated a limit of detection (LOD) of 6 nM, three times better when compared with the results obtained in our previous work. Moreover, the real effectiveness of the proposed optical assay has been also confirmed in complex matrices as the case of lysates of Escherichia coli overexpressing AmpC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA