Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Clin Neurophysiol ; 130(6): 925-940, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30981899

RESUMEN

The pedunculopontine nucleus (PPN) is located in the mesopontine tegmentum and is best delimited by a group of large cholinergic neurons adjacent to the decussation of the superior cerebellar peduncle. This part of the brain, populated by many other neuronal groups, is a crossroads for many important functions. Good evidence relates the PPN to control of reflex reactions, sleep-wake cycles, posture and gait. However, the precise role of the PPN in all these functions has been controversial and there still are uncertainties in the functional anatomy and physiology of the nucleus. It is difficult to grasp the extent of the influence of the PPN, not only because of its varied functions and projections, but also because of the controversies arising from them. One controversy is its relationship to the mesencephalic locomotor region (MLR). In this regard, the PPN has become a new target for deep brain stimulation (DBS) for the treatment of parkinsonian gait disorders, including freezing of gait. This review is intended to indicate what is currently known, shed some light on the controversies that have arisen, and to provide a framework for future research.


Asunto(s)
Tronco Encefálico/fisiología , Congresos como Asunto , Consenso , Núcleo Tegmental Pedunculopontino/fisiología , Sociedades Médicas , Estimulación Encefálica Profunda/métodos , District of Columbia/epidemiología , Humanos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Inhibición Prepulso/fisiología , Fases del Sueño/fisiología
2.
J Physiol ; 592(7): 1601-17, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24344163

RESUMEN

Considerable electrophysiological and pharmacological evidence has long suggested an important role for acetylcholine in the regulation of rapid-eye-movement (REM) sleep. For example, injection of the cholinergic agonist carbachol into the dorsomedial pons produces an REM sleep-like state with muscle atonia and cortical activation, both of which are cardinal features of REM sleep. Located within this region of the pons is the sublaterodorsal nucleus (SLD), a structure thought to be both necessary and sufficient for generating REM sleep muscle atonia. Subsets of glutamatergic SLD neurons potently contribute to motor inhibition during REM sleep through descending projections to motor-related glycinergic/GABAergic neurons in the spinal cord and ventromedial medulla. Prior electrophysiological and pharmacological studies examining the effects of acetylcholine on SLD neurons have, however, produced conflicting results. In the present study, we sought to clarify how acetylcholine influences the activity of spinally projecting SLD (SLDsp) neurons. We used retrograde tracing in combination with patch-clamp recordings and recorded pre- and postsynaptic effects of carbachol on SLDsp neurons. Carbachol acted presynaptically by increasing the frequency of glutamatergic miniature excitatory postsynaptic currents. We also found that carbachol directly excited SLDsp neurons by activating an Na(+)-Ca(2+) exchanger. Both pre- and postsynaptic effects were mediated by co-activation of M1 and M3 muscarinic receptors. These observations suggest that acetylcholine produces synergistic, excitatory pre- and postsynaptic responses on SLDsp neurons that, in turn, probably serve to promote muscle atonia during REM sleep.


Asunto(s)
Carbacol/farmacología , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Agonistas Muscarínicos/farmacología , Puente/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Acetilcolina/metabolismo , Animales , Neuronas Colinérgicas/metabolismo , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Ácido Glutámico/metabolismo , Técnicas In Vitro , Masculino , Ratones Endogámicos C57BL , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Neuronas Motoras/metabolismo , Inhibición Neural/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Puente/metabolismo , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M3/agonistas , Receptor Muscarínico M3/metabolismo , Transducción de Señal/efectos de los fármacos , Sueño REM/efectos de los fármacos , Intercambiador de Sodio-Calcio/efectos de los fármacos , Intercambiador de Sodio-Calcio/metabolismo , Médula Espinal/metabolismo , Factores de Tiempo
3.
J Physiol ; 586(14): 3305-6, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18625803
4.
Eur J Neurosci ; 25(5): 1417-36, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17425568

RESUMEN

Anesthesia, slow-wave sleep, syncope, concussion and reversible coma are behavioral states characterized by loss of consciousness, slow-wave cortical electroencephalogram, and motor and sensory suppression. We identified a focal area in the rat brainstem, the mesopontine tegmental anesthesia area (MPTA), at which microinjection of pentobarbital and other GABA(A) receptor (GABA(A)-R) agonists reversibly induced an anesthesia-like state. This effect was attenuated by local pre-treatment with the GABA(A)-R antagonist bicuculline. Using neuroanatomical tracing we identified four pathways ascending from the MPTA that are positioned to mediate electroencephalographic synchronization and loss of consciousness: (i) projections to the intralaminar thalamic nuclei that, in turn, project to the cortex; (ii) projections to several pontomesencephalic, diencephalic and basal forebrain nuclei that project cortically and are considered parts of an ascending "arousal system"; (iii) a projection to other parts of the subcortical forebrain, including the septal area, hypothalamus, zona incerta and striato-pallidal system, that may indirectly affect cortical arousal and hippocampal theta rhythm; and (iv) modest projections directly to the frontal cortex. Several of these areas have prominent reciprocal projections back to the MPTA, notably the zona incerta, lateral hypothalamus and frontal cortex. We hypothesize that barbiturate anesthetics and related agents microinjected into the MPTA enhance the inhibitory response of local GABA(A)-R-bearing neurons to endogenous GABA released at baseline during wakefulness. This modulates activity in one or more of the identified ascending neural pathways, ultimately leading to loss of consciousness.


Asunto(s)
Anestésicos , Mapeo Encefálico , Vías Nerviosas/fisiopatología , Receptores de GABA-A/fisiología , Inconsciencia/etiología , Inconsciencia/patología , Animales , Bicuculina/farmacología , Biotina/análogos & derivados , Biotina/metabolismo , Toxina del Cólera/metabolismo , Dextranos/metabolismo , Electroencefalografía/métodos , Electromiografía , Antagonistas del GABA/farmacología , Masculino , Microinyecciones/métodos , Vías Nerviosas/efectos de los fármacos , Compuestos de Amonio Cuaternario/administración & dosificación , Ratas , Ratas Wistar
5.
Brain ; 130(Pt 11): 2770-88, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17412731

RESUMEN

REM sleep behaviour disorder (RBD) is a parasomnia characterized by the loss of normal skeletal muscle atonia during REM sleep with prominent motor activity accompanying dreaming. The terminology relating to RBD, and mechanisms underlying REM sleep without atonia and RBD based on data in cat and rat are presented. Neuroimaging data from the few published human cases with RBD associated with structural lesions in the brainstem are presented, in which the dorsal midbrain and pons are implicated. Pharmacological manipulations which alter RBD frequency and severity are reviewed, and the data from human neuropathological studies are presented. An anatomic framework and new schema for the pathophysiology of RBD are proposed based on recent data in rat regarding the putative flip-flop switch for REM sleep control. The structure in man analogous to the subcoeruleus region in cat and sublaterodorsal nucleus in rat is proposed as the nucleus (and its associated efferent and afferent pathways) crucial to RBD pathophysiology. The association of RBD with neurological disease ('secondary RBD') is presented, with emphasis on RBD associated with neurodegenerative disease, particularly the synucleinopathies. The hypothesized pathophysiology of RBD is presented in relation to the Braak staging system for Parkinson's disease, in which the topography and temporal sequence of synuclein pathology in the brain could explain the evolution of parkinsonism and/or dementia well after the onset of RBD. These data suggest that many patients with 'idiopathic' RBD are actually exhibiting an early clinical manifestation of an evolving neurodegenerative disorder. Such patients may be appropriate for future drug therapies that affect synuclein pathophysiology, in which the development of parkinsonism and/or dementia could be delayed or prevented. We suggest that additional clinicopathological studies be performed in patients with dementia or parkinsonism, with and without RBD, as well as in patients with idiopathic RBD, to further elucidate the pathophysiology and also characterize the clinical and pathophysiological relevance of RBD in neurodegenerative disease. Furthermore, longitudinal studies in patients with idiopathic RBD are warranted to characterize the natural history of such patients and prepare for future therapeutic trials.


Asunto(s)
Encéfalo/fisiopatología , Trastorno de la Conducta del Sueño REM/fisiopatología , Animales , Encéfalo/patología , Humanos , Imagen por Resonancia Magnética , Modelos Animales , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/fisiopatología , Trastorno de la Conducta del Sueño REM/patología
6.
Artículo en Inglés | MEDLINE | ID: mdl-18419313

RESUMEN

All mammals have daily cycles of behavior (e.g., wake-sleep and feeding), and physiology (e.g., hormone secretion and body temperature). These cycles are typically entrained to the external light/dark cycle, but they can be altered dramatically under conditions of restricted food availability, changes in ambient temperature, or the presence of external stimuli such as predators. During the past 30 years, one of the best studied of these responses has been the entrainment of circadian rhythms to food availability. Experiments in rats and other rodents have provided evidence for a food-entrainable oscillator (FEO) in the mammalian circadian timing system (CTS). Until recently, however, very little was understood about the locus subserving the FEO or the functional interrelationship between the FEO and the master CTS pacemaker, the suprachiasmatic nucleus (SCN). We discuss here new data on the location of the FEO and suggest that it may involve an oscillator mechanism that is "induced" by starvation and refeeding.


Asunto(s)
Relojes Biológicos/fisiología , Vías Aferentes/fisiología , Animales , Relojes Biológicos/genética , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Núcleo Hipotalámico Dorsomedial/fisiología , Ingestión de Alimentos/fisiología , Vías Eferentes/fisiología , Alimentos , Modelos Neurológicos , Ratas , Núcleo Supraquiasmático/fisiología
7.
J Chem Neuroanat ; 32(2-4): 159-78, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17049433

RESUMEN

Pentobarbital microinjected into a restricted locus in the upper brainstem induces a general anesthesia-like state characterized by atonia, loss of consciousness, and pain suppression as assessed by loss of nocifensive response to noxious stimuli. This locus is the mesopontine tegmental anesthesia area (MPTA). Although anesthetic agents directly influence spinal cord nociceptive processing, antinociception during intracerebral microinjection indicates that they can also act supraspinally. Using neuroanatomical tracing methods we show that the MPTA has multiple descending projections to brainstem and spinal areas associated with pain modulation. Most prominent is a massive projection to the rostromedial medulla, a nodal region for descending pain modulation. Together with the periaqueductal gray (PAG), the MPTA is the major mesopontine input to this region. Less dense projections target the PAG, the locus coeruleus and pericoerulear areas, and dorsal and ventral reticular nuclei of the caudal medulla. The MPTA also has modest direct projections to the trigeminal nuclear complex and to superficial layers of the dorsal horn. Double anterograde and retrograde labeling at the light and electron microscopic levels shows that MPTA neurons with descending projections synapse directly on spinally projecting cells of rostromedial medulla. The prominence of the MPTA's projection to the rostromedial medulla suggests that, like the PAG, it may exert antinociceptive actions via this bulbospinal relay.


Asunto(s)
Vías Eferentes/citología , Dolor/fisiopatología , Puente/citología , Formación Reticular/citología , Tegmento Mesencefálico/citología , Anestésicos/farmacología , Animales , Biotina/análogos & derivados , Mapeo Encefálico , Toxina del Cólera , Dextranos , Vías Eferentes/efectos de los fármacos , Vías Eferentes/fisiología , Vectores Genéticos , Proteínas Fluorescentes Verdes , Masculino , Microscopía Electrónica de Transmisión , Red Nerviosa/citología , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Inhibición Neural/fisiología , Neuronas/citología , Neuronas/fisiología , Nociceptores/efectos de los fármacos , Nociceptores/fisiología , Puente/efectos de los fármacos , Puente/fisiología , Terminales Presinápticos/fisiología , Terminales Presinápticos/ultraestructura , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Formación Reticular/efectos de los fármacos , Formación Reticular/fisiología , Tegmento Mesencefálico/efectos de los fármacos , Tegmento Mesencefálico/fisiología
8.
Neuroscience ; 140(2): 403-13, 2006 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-16542780

RESUMEN

Adenosine has been proposed as a homeostatic "sleep factor" that promotes the transition from waking to sleep by affecting several sleep-wake regulatory systems. In the basal forebrain, adenosine accumulates during wakefulness and, when locally applied, suppresses neuronal activity and promotes sleep. However, the neuronal phenotype mediating these effects is unknown. We used whole-cell patch-clamp recordings in in vitro rat brain slices to investigate the effect of adenosine on identified cholinergic and noncholinergic neurons of the magnocellular preoptic nucleus and substantia innominata. Adenosine (0.5-100 microM) reduced the magnocellular preoptic nucleus and substantia innominata cholinergic neuronal firing rate by activating an inwardly rectifying potassium current that reversed at -82 mV and was blocked by barium (100 microM). Application of the A1 receptor antagonist 8-cyclo-pentyl-theophylline (200 nM) blocked the effects of adenosine. Adenosine was also tested on two groups of electrophysiologically distinct noncholinergic magnocellular preoptic nucleus and substantia innominata neurons. In the first group adenosine, via activation of postsynaptic A1 receptors, reduced spontaneous firing via inhibition of the hyperpolarization-activated cation current. Blocking the H-current with ZD7288 (20 microM) abolished adenosine effects on these neurons. The second group was not affected by adenosine. These results demonstrate that, in the magnocellular preoptic nucleus and substantia innominata region of the basal forebrain, adenosine inhibits both cholinergic neurons and a subset of noncholinergic neurons. Both of these effects occur via postsynaptic A1 receptors, but are mediated downstream by two separate mechanisms.


Asunto(s)
Acetilcolina/metabolismo , Adenosina/metabolismo , Fibras Colinérgicas/metabolismo , Neuronas/metabolismo , Área Preóptica/metabolismo , Sustancia Innominada/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Adenosina/farmacología , Agonistas del Receptor de Adenosina A1 , Antagonistas del Receptor de Adenosina A1 , Animales , Fibras Colinérgicas/efectos de los fármacos , Femenino , Masculino , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Canales de Potasio/efectos de los fármacos , Canales de Potasio/metabolismo , Área Preóptica/citología , Área Preóptica/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptor de Adenosina A1/metabolismo , Sueño/efectos de los fármacos , Sueño/fisiología , Sustancia Innominada/citología , Sustancia Innominada/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Canales de Potencial de Receptor Transitorio/efectos de los fármacos , Canales de Potencial de Receptor Transitorio/metabolismo
9.
Neurology ; 65(8): 1184-8, 2005 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-16247044

RESUMEN

BACKGROUND: Narcolepsy with cataplexy is associated with a loss of orexin/hypocretin. It is speculated that an autoimmune process kills the orexin-producing neurons, but these cells may survive yet fail to produce orexin. OBJECTIVE: To examine whether other markers of the orexin neurons are lost in narcolepsy with cataplexy. METHODS: We used immunohistochemistry and in situ hybridization to examine the expression of orexin, neuronal activity-regulated pentraxin (NARP), and prodynorphin in hypothalami from five control and two narcoleptic individuals. RESULTS: In the control hypothalami, at least 80% of the orexin-producing neurons also contained prodynorphin mRNA and NARP. In the patients with narcolepsy, the number of cells producing these markers was reduced to about 5 to 10% of normal. CONCLUSIONS: Narcolepsy with cataplexy is likely caused by a loss of the orexin-producing neurons. In addition, loss of dynorphin and neuronal activity-regulated pentraxin may contribute to the symptoms of narcolepsy.


Asunto(s)
Hipotálamo/fisiopatología , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Narcolepsia/etiología , Narcolepsia/fisiopatología , Enfermedades Neurodegenerativas/complicaciones , Enfermedades Neurodegenerativas/fisiopatología , Neuropéptidos/deficiencia , Anciano , Autoanticuerpos/inmunología , Enfermedades Autoinmunes del Sistema Nervioso/complicaciones , Enfermedades Autoinmunes del Sistema Nervioso/patología , Enfermedades Autoinmunes del Sistema Nervioso/fisiopatología , Mapeo Encefálico , Proteína C-Reactiva/deficiencia , Proteína C-Reactiva/genética , Proteína C-Reactiva/inmunología , Dinorfinas/deficiencia , Dinorfinas/genética , Dinorfinas/inmunología , Humanos , Hipotálamo/metabolismo , Hipotálamo/patología , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/inmunología , Masculino , Persona de Mediana Edad , Narcolepsia/patología , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/inmunología , Vías Nerviosas/metabolismo , Vías Nerviosas/patología , Vías Nerviosas/fisiopatología , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Neuronas/patología , Neuropéptidos/genética , Neuropéptidos/inmunología , Orexinas , ARN Mensajero/metabolismo
10.
Neuroscience ; 133(4): 1039-46, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15927405

RESUMEN

The hypothalamus, especially the preoptic area, plays a crucial role in thermoregulation, and our previous studies showed that the periaqueductal gray matter is important for transmitting efferent signals to thermoregulatory effectors in rats. Neurons responsible for skin vasodilation are located in the lateral portion of the rostral periaqueductal gray matter, and neurons that mediate non-shivering thermogenesis are located in the ventrolateral part of the caudal periaqueductal gray matter. We investigated the distribution of neurons in the rat hypothalamus that are activated by exposure to neutral (26 degrees C), warm (33 degrees C), or cold (10 degrees C) ambient temperature and project to the rostral periaqueductal gray matter or caudal periaqueductal gray matter, by using the immunohistochemical analysis of Fos and a retrograde tracer, cholera toxin-b. When cholera toxin-b was injected into the rostral periaqueductal gray matter, many double-labeled cells were observed in the median preoptic nucleus in warm-exposed rats, but few were seen in cold-exposed rats. On the other hand, when cholera toxin-b was injected into the caudal periaqueductal gray matter, many double-labeled cells were seen in a cell group extending from the dorsomedial nucleus through the dorsal hypothalamic area in cold-exposed rats but few were seen in warm-exposed rats. These results suggest that the rostral periaqueductal gray matter receives input from the median preoptic nucleus neurons activated by warm exposure, and the caudal periaqueductal gray matter receives input from neurons in the dorsomedial nucleus/dorsal hypothalamic area region activated by cold exposure. These efferent pathways provide a substrate for thermoregulatory skin vasomotor response and non-shivering thermogenesis, respectively.


Asunto(s)
Vías Eferentes/metabolismo , Hipotálamo/citología , Neuronas/metabolismo , Proteínas Oncogénicas v-fos/metabolismo , Sustancia Gris Periacueductal/metabolismo , Temperatura , Animales , Recuento de Células/métodos , Toxina del Cólera/metabolismo , Activación Enzimática/fisiología , Hipotálamo/fisiología , Inmunohistoquímica/métodos , Masculino , Neuronas/clasificación , Ratas , Ratas Wistar , Distribución Tisular
11.
Neuroscience ; 132(3): 575-80, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15837119

RESUMEN

Adenosine protects neurons during hypoxia by inhibiting excitatory synaptic transmission and preventing NMDA receptor activation. Using an adeno-associated viral (AAV) vector containing Cre recombinase, we have focally deleted adenosine A(1) receptors in specific hippocampal regions of adult mice. Recently, we found that deletion of A(1) receptors in the CA1 area blocks the postsynaptic responses to adenosine in CA1 pyramidal neurons, and deletion of A(1) receptors in CA3 neurons abolishes the presynaptic effects of adenosine on the Schaffer collateral input [J Neurosci 23 (2003) 5762]. In the current study, we used this technique to delete A(1) receptors focally from CA3 neurons to investigate whether presynaptic A(1) receptors protect synaptic transmission from hypoxia. We studied the effects of prolonged (1 h) hypoxia on the evoked field excitatory postsynaptic potentials (fEPSPs) in the CA1 region using in vitro slices. Focal deletion of the presynaptic A(1) receptors on the Schaffer collateral input slowed the depression of the fEPSPs in response to hypoxia and impaired the recovery of the fEPSPs after hypoxia. Delayed responses to hypoxia linearly correlated with impaired recovery. These findings provide direct evidence that the neuroprotective role of adenosine during hypoxia depends on the rapid inhibition of synaptic transmission by the activation of presynaptic A(1) receptors.


Asunto(s)
Hipoxia/metabolismo , Terminales Presinápticos/metabolismo , Receptor de Adenosina A1/deficiencia , Recuperación de la Función/fisiología , Transmisión Sináptica/fisiología , Antagonistas del Receptor de Adenosina A1 , Animales , Dependovirus/fisiología , Estimulación Eléctrica/métodos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de la radiación , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Hipocampo/efectos de la radiación , Hipoxia/fisiopatología , Hibridación in Situ/métodos , Técnicas In Vitro , Integrasas/fisiología , Ratones , Ratones Noqueados , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Inhibición Neural/efectos de la radiación , Terminales Presinápticos/efectos de los fármacos , Receptor de Adenosina A1/genética , Transmisión Sináptica/efectos de los fármacos , Teofilina/análogos & derivados , Teofilina/farmacología , Factores de Tiempo
12.
Neuroscience ; 119(4): 913-8, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12831851

RESUMEN

The ventrolateral preoptic nucleus (VLPO) is a key regulator of behavioral state that promotes sleep by directly inhibiting brain regions that maintain wakefulness. Subarachnoid administration of adenosine (AD) or AD agonists promotes sleep and induces expression of Fos protein in VLPO neurons. Therefore, activation of VLPO neurons may contribute to the somnogenic actions of AD. To define the mechanism through which AD activates VLPO neurons, we prepared hypothalamic slices from 9 to 12-day-old rat pups and recorded from 43 neurons in the galaninergic VLPO cluster; nine neurons contained galanin mRNA by post hoc in situ hybridization. Bath application of AD (20 microM) to seven of these neurons had no direct effect but caused a significant decrease in the frequency of spontaneous miniature inhibitory postsynaptic currents in the presence of tetrodotoxin, indicating a presynaptic site of action. We conclude that AD-mediated disinhibition increases the excitability of VLPO neurons thus contributing to the somnogenic properties of AD.


Asunto(s)
Adenosina/metabolismo , Vías Aferentes/metabolismo , Área Preóptica/metabolismo , Terminales Presinápticos/metabolismo , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Adenosina/farmacología , Vías Aferentes/citología , Vías Aferentes/efectos de los fármacos , Animales , Animales Recién Nacidos , Femenino , Galanina/genética , Masculino , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Técnicas de Cultivo de Órganos , Área Preóptica/citología , Área Preóptica/efectos de los fármacos , Terminales Presinápticos/efectos de los fármacos , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Sueño/efectos de los fármacos , Sueño/fisiología , Transmisión Sináptica/efectos de los fármacos
13.
Neuroscience ; 119(4): 1033-44, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12831862

RESUMEN

The orexins (also known as hypocretins) are peptide neurotransmitters made by hypothalamic neurons that are thought to play an important role in regulating wake-sleep states. One terminal area for orexin neurons is the tuberomammillary nucleus, a histaminergic cell group that is wake-active, but the relationship of the orexinergic terminals to the tuberomammillary neurons has not been examined in detail. We studied the ultrastructure of orexin A-immunoreactive axons and terminals in the tuberomammillary nucleus using pre- and post-embedding electron microscopic protocols. We confirmed an abundant projection of orexin-immunoreactive boutons to both dorsal and ventral divisions of the tuberomammillary nucleus. These terminals made asymmetric synaptic contacts with proximal and intermediate dendrites of tuberomammillary neurons. They contained small, clear synaptic vesicles and up to 30-40 dense core vesicles were seen per terminal in a single section. Both pre- and post-embedding immunostaining revealed that orexin immunoreactivity was localized to the dense core vesicles, which were always at a distance from the synaptic specialization. We also found glutamate immunoreactivity in the small synaptic vesicles which were at the active zone of the synapses of many of the same terminals. Orexinergic afferents to the tuberomammillary neurons contain separate populations of orexinergic and glutamatergic vesicles, suggesting that the release of these neurotransmitters may be differentially regulated.


Asunto(s)
Vías Aferentes/metabolismo , Proteínas Portadoras/metabolismo , Ácido Glutámico/metabolismo , Área Hipotalámica Lateral/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Neuropéptidos/metabolismo , Terminales Presinápticos/metabolismo , Adenosina Desaminasa/metabolismo , Vías Aferentes/ultraestructura , Animales , Histamina/metabolismo , Área Hipotalámica Lateral/ultraestructura , Inmunohistoquímica , Masculino , Microscopía Electrónica , Orexinas , Terminales Presinápticos/ultraestructura , Ratas , Ratas Sprague-Dawley , Membranas Sinápticas/metabolismo , Membranas Sinápticas/ultraestructura , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestructura
14.
Neuroscience ; 115(1): 285-94, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12401341

RESUMEN

The ventrolateral preoptic nucleus (VLPO) is a group of sleep-active neurons that has been identified in the hypothalamus of rats and is thought to inhibit the major ascending monoaminergic arousal systems during sleep; lesions of the VLPO cause insomnia. Identification of the VLPO in other species has been complicated by the lack of a marker for this cell population, other than the expression of Fos during sleep. We now report that a high percentage of the sleep-active (Fos-expressing) VLPO neurons express mRNA for the inhibitory neuropeptide, galanin, in nocturnal rodents (mice and rats), diurnal rodents (degus), and cats. A homologous (i.e. galanin mRNA-containing cell group) is clearly distinguishable in the ventrolateral region of the preoptic area in diurnal and nocturnal monkeys, as well as in humans. Galanin expression may serve to identify sleep-active neurons in the ventrolateral preoptic area of the mammalian brain. The VLPO appears to be a critical component of sleep circuitry across multiple species, and we hypothesize that shrinkage of the VLPO with advancing age may explain sleep deficits in elderly humans.


Asunto(s)
Galanina/fisiología , Neuronas/metabolismo , Área Preóptica/metabolismo , Sueño/fisiología , Núcleo Hipotalámico Ventromedial/metabolismo , Adulto , Animales , Aotidae , Gatos , Galanina/análisis , Galanina/biosíntesis , Humanos , Macaca mulatta , Ratones , Neuronas/química , Área Preóptica/química , Proteínas Proto-Oncogénicas c-fos/análisis , Proteínas Proto-Oncogénicas c-fos/biosíntesis , ARN Mensajero/análisis , ARN Mensajero/biosíntesis , Ratas , Roedores , Núcleos Talámicos Ventrales , Núcleo Hipotalámico Ventromedial/química
15.
Nat Neurosci ; 5(10): 979-84, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12195434

RESUMEN

We investigated the role of regionally discrete GABA (gamma-aminobutyric acid) receptors in the sedative response to pharmacological agents that act on GABA(A) receptors (muscimol, propofol and pentobarbital; 'GABAergic agents') and to ketamine, a general anesthetic that does not affect GABA(A) receptors. Behavioral studies in rats showed that the sedative response to centrally administered GABAergic agents was attenuated by the GABA(A) receptor antagonist gabazine (systemically administered). The sedative response to ketamine, by contrast, was unaffected by gabazine. Using c-Fos as a marker of neuronal activation, we identified a possible role for the tuberomammillary nucleus (TMN): when gabazine was microinjected directly into the TMN, it attenuated the sedative response to GABAergic agents. Furthermore, the GABA(A) receptor agonist muscimol produced a dose-dependent sedation when it was administered into the TMN. We conclude that the TMN is a discrete neural locus that has a key role in the sedative response to GABAergic anesthetics.


Asunto(s)
Anestesia , Hipnóticos y Sedantes/farmacología , Área Hipotalámica Lateral/fisiología , Receptores de GABA-A/fisiología , Sueño/fisiología , Anestesia/métodos , Anestésicos/farmacología , Animales , Agonistas del GABA/farmacología , Antagonistas del GABA/farmacología , Agonistas de Receptores de GABA-A , Antagonistas de Receptores de GABA-A , Área Hipotalámica Lateral/efectos de los fármacos , Masculino , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Ratas , Ratas Endogámicas F344 , Sueño/efectos de los fármacos
16.
J Physiol ; 537(Pt 2): 521-35, 2001 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-11731583

RESUMEN

1. Intracellular recordings were made from neurones in rat hypothalamic tissue slices, primarily in the preoptic area and anterior hypothalamus, a thermoregulatory region that integrates central and peripheral thermal information. The present study compared morphologies and local synaptic inputs of warm-sensitive and temperature-insensitive neurones. 2. Warm-sensitive neurones oriented their dendrites perpendicular to the third ventricle, with medial dendrites directed toward the periventricular region and lateral dendrites directed toward the medial forebrain bundle. In contrast, temperature-insensitive neurones generally oriented their dendrites parallel to the third ventricle. 3. Both warm-sensitive and temperature-insensitive neurones displayed excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs). In most cases, EPSP and IPSP frequencies were not affected by temperature changes, suggesting that temperature-insensitive neurones are responsible for most local synapses within this hypothalamic network. 4. Two additional neuronal groups were identified: silent neurones having no spontaneous firing rates and EPSP-driven neurones having action potentials that are primarily dependent on excitatory synaptic input from nearby neurones. Silent neurones had the most extensive dendritic trees, and these branched in all directions. In contrast, EPSP-driven neurones had the fewest dendrites, and usually the dendrites were oriented in only one direction (either medially or laterally), suggesting that these neurones receive more selective synaptic input.


Asunto(s)
Hipotálamo/citología , Hipotálamo/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Sensación Térmica/fisiología , Animales , Potenciales Postsinápticos Excitadores/fisiología , Hipotálamo/ultraestructura , Masculino , Inhibición Neural/fisiología , Neuronas/ultraestructura , Ratas , Ratas Sprague-Dawley
17.
Nat Neurosci ; 4(12): 1165, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11713469

RESUMEN

All known eukaryotic organisms exhibit physiological and behavioral rhythms termed circadian rhythms that cycle with a near-24-hour period; in mammals, light is the most potent stimulus for entraining endogenous rhythms to the daily light cycle. Photic information is transmitted via the retinohypothalamic tract (RHT) to the suprachiasmatic nucleus (SCN) in the hypothalamus, where circadian rhythms are generated, but the retinal photopigment that mediates circadian entrainment has remained elusive. Here we show that most retinal ganglion cells (RGCs) that project to the SCN express the photopigment melanopsin.


Asunto(s)
Ritmo Circadiano/fisiología , Vías Nerviosas/metabolismo , Células Ganglionares de la Retina/metabolismo , Opsinas de Bastones/genética , Estilbamidinas , Núcleo Supraquiasmático/metabolismo , Animales , Colorantes Fluorescentes , Lateralidad Funcional/fisiología , Fototransducción/fisiología , Vías Nerviosas/citología , Estimulación Luminosa , ARN Mensajero/metabolismo , Ratas , Células Ganglionares de la Retina/citología , Núcleo Supraquiasmático/citología
18.
Neuroscience ; 107(4): 653-63, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11720788

RESUMEN

Considerable evidence indicates that adenosine may be an endogenous somnogen, yet the mechanism through which it promotes sleep is unknown. Adenosine may act via A1 receptors to promote sleep, but an A2a receptor antagonist can block the sleep induced by prostaglandin D(2). We previously reported that prostaglandin D(2) activates sleep-promoting neurons of the ventrolateral preoptic area, and we hypothesized that an A2a receptor agonist also should activate these neurons. Rats were instrumented for sleep recordings, and an injection cannula was placed in the subarachnoid space just anterior to the ventrolateral preoptic area. After an 8-10-day recovery period, the A2a receptor agonist CGS21680 (20 pmol/min) or saline was infused through the injection cannula, and the animals were killed 2 h later. The brains were stained using Fos immunohistochemistry, and the pattern of Fos expression was studied in the entire brain. CGS21680 increased non-rapid eye movement sleep and markedly increased the expression of Fos in the ventrolateral preoptic area and basal leptomeninges, but it reduced Fos expression in wake-active brain regions such as the tuberomammillary nucleus. CGS21680 also induced Fos in the shell and core of the nucleus accumbens and in the lateral subdivision of the central nucleus of the amygdala. To determine whether these effects may have been mediated through A1 receptors, an additional group of rats received subarachnoid infusion of the A1 receptor agonist N(6)-cyclopentyladenosine (2 pmol/min). In contrast to CGS21680, infusion of N(6)-cyclopentyladenosine into the subarachnoid space produced only a small decrease in rapid eye movement sleep, and the pattern of Fos expression induced by N(6)-cyclopentyladenosine was notable only for decreased Fos in regions near the infusion site. These findings suggest that an adenosine A2a receptor agonist may activate cells of the leptomeninges or nucleus accumbens that increase the activity of ventrolateral preoptic area neurons. These ventrolateral preoptic area neurons may then coordinate the inhibition of multiple wake-promoting regions, resulting in sleep.


Asunto(s)
Adenosina/análogos & derivados , Neuronas/metabolismo , Área Preóptica/citología , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Agonistas del Receptor Purinérgico P1 , Sueño/efectos de los fármacos , Adenosina/farmacología , Animales , Antihipertensivos/farmacología , Química Encefálica/efectos de los fármacos , Masculino , Neuronas/química , Fenetilaminas/farmacología , Área Preóptica/fisiología , Proteínas Proto-Oncogénicas c-fos/análisis , Ratas , Ratas Sprague-Dawley , Receptor de Adenosina A2A , Organismos Libres de Patógenos Específicos , Espacio Subaracnoideo , Vigilia/efectos de los fármacos
19.
Trends Neurosci ; 24(12): 726-31, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11718878

RESUMEN

More than 70 years ago, von Economo predicted a wake-promoting area in the posterior hypothalamus and a sleep-promoting region in the preoptic area. Recent studies have dramatically confirmed these predictions. The ventrolateral preoptic nucleus contains GABAergic and galaninergic neurons that are active during sleep and are necessary for normal sleep. The posterior lateral hypothalamus contains orexin/hypocretin neurons that are crucial for maintaining normal wakefulness. A model is proposed in which wake- and sleep-promoting neurons inhibit each other, which results in stable wakefulness and sleep. Disruption of wake- or sleep-promoting pathways results in behavioral state instability.


Asunto(s)
Hipotálamo/fisiología , Sueño/fisiología , Vigilia/fisiología , Animales , Humanos , Hipotálamo/citología , Vías Nerviosas
20.
J Neurosci ; 21(19): RC168, 2001 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-11567079

RESUMEN

Orexins (also called hypocretins) are peptide neurotransmitters expressed in neurons of the lateral hypothalamic area (LHA). Mice lacking the orexin peptides develop narcolepsy-like symptoms, whereas mice with a selective loss of the orexin neurons develop hypophagia and severe obesity in addition to the narcolepsy phenotype. These different phenotypes suggest that orexin neurons may contain neurotransmitters besides orexin that regulate feeding and energy balance. Dynorphin neurons are common in the LHA, and dynorphin has been shown to influence feeding; hence, we studied whether dynorphin and orexin are colocalized. In rats, double-label in situ hybridization revealed that nearly all (94%) neurons expressing prepro-orexin mRNA also expressed prodynorphin mRNA. The converse was also true: 96% of neurons in the LHA containing prodynorphin mRNA also expressed prepro-orexin mRNA. Double-label immunohistochemistry confirmed that orexin-A and dynorphin-A peptides were highly colocalized in the LHA. Wild-type mice and orexin knock-out mice showed abundant prodynorphin mRNA-expressing neurons in the LHA, but orexin/ataxin-3 mice with a selective loss of the orexin neurons completely lacked prodynorphin mRNA in this area, further confirming that within the LHA, dynorphin expression is restricted to the orexin neurons. These findings suggest that dynorphin-A may play an important role in the function of the orexin neurons.


Asunto(s)
Proteínas Portadoras/metabolismo , Dinorfinas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Neuronas/metabolismo , Neuropéptidos/metabolismo , Precursores de Proteínas/metabolismo , Animales , Ataxina-3 , Proteínas Portadoras/genética , Dinorfinas/genética , Fórnix/citología , Fórnix/metabolismo , Hipotálamo/citología , Hipotálamo/metabolismo , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Neuropéptidos/deficiencia , Neuropéptidos/genética , Proteínas Nucleares , Orexinas , Precursores de Proteínas/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Represoras , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA