Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Int Immunopharmacol ; 141: 112919, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146785

RESUMEN

Rheumatoid arthritis (RA) is an inflammatory joint disease characterized by persistent synovitis and inflammation. The exact mechanism of mitochondrial function in the presence of inflammation and dysregulation of autophagic processes in the pathogenesis of RA is still unclear. The aim of our study is to determine mitochondrial function, gene and protein levels of biomolecules related to inflammation (YKL-40) and autophagy (LAMPs) and to search a connection between them in the RA context. Twenty newly diagnosed RA patients and ten healthy individuals were included in the study. Disease severity was assessed by ultrasonography. Conventional clinico-laboratory parameters, immunological markers and protein levels of LAMPs and YKL-40 were examined in plasma. Gene expression analysis for the quantitative measurement of LAMPs and YKL-40 were conducted in white blood cells (WBC). A real-time metabolic analysis was performed to assess mitochondrial function and cell metabolism in peripheral blood mononuclear cells (PBMCs). Increase in spare respiratory capacity in PBMCs of RA patients was detected. Decreased LAMPs plasma protein levels and increased protein levels of YKL-40 in RA patients compared to healthy individuals were measured. No significant differences were found in gene expressions. Correlations between mitochondrial, ultrasonographic and protein levels of the biomarkers related with inflammation and autophagy were established. New data on mitochondrial dysfunction in RA patients and links to inflammation and mitophagy are reported. The relationship between dysregulation of mitophagy and joint diseases deserves to be thoroughly investigated as it would be a promising therapeutic approach.


Asunto(s)
Artritis Reumatoide , Proteína 1 Similar a Quitinasa-3 , Lisosomas , Mitocondrias , Humanos , Artritis Reumatoide/inmunología , Artritis Reumatoide/sangre , Proteína 1 Similar a Quitinasa-3/sangre , Proteína 1 Similar a Quitinasa-3/metabolismo , Proteína 1 Similar a Quitinasa-3/genética , Masculino , Femenino , Persona de Mediana Edad , Mitocondrias/metabolismo , Adulto , Lisosomas/metabolismo , Inflamación , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/inmunología , Autofagia , Biomarcadores/sangre
2.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39125780

RESUMEN

Autism spectrum disorder (ASD) is associated with multiple physiological abnormalities. Current laboratory and clinical evidence most commonly report mitochondrial dysfunction, oxidative stress, and immunological imbalance in almost every cell type of the body. The present work aims to evaluate oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and inflammation-related molecules such as Cyclooxygenase-2 (COX-2), chitinase 3-like protein 1 (YKL-40), Interleukin-1 beta (IL-1ß), Interleukin-9 (IL-9) in ASD children with and without regression compared to healthy controls. Children with ASD (n = 56) and typically developing children (TDC, n = 12) aged 1.11 to 11 years were studied. Mitochondrial activity was examined in peripheral blood mononuclear cells (PBMCs) isolated from children with ASD and from the control group, using a metabolic analyzer. Gene and protein levels of IL-1ß, IL-9, COX-2, and YKL-40 were investigated in parallel. Our results showed that PBMCs of the ASD subgroup of regressed patients (ASD R(+), n = 21) had a specific pattern of mitochondrial activity with significantly increased maximal respiration, respiratory spare capacity, and proton leak compared to the non-regressed group (ASD R(-), n = 35) and TDC. Furthermore, we found an imbalance in the studied proinflammatory molecules and increased levels in ASD R(-) proving the involvement of inflammatory changes. The results of this study provide new evidence for specific bioenergetic profiles of immune cells and elevated inflammation-related molecules in ASD. For the first time, data on a unique metabolic profile in ASD R(+) and its comparison with a random group of children of similar age and sex are provided. Our data show that mitochondrial dysfunction is more significant in ASD R(+), while in ASD R(-) inflammation is more pronounced. Probably, in the group without regression, immune mechanisms (immune dysregulation, leading to inflammation) begin initially, and at a later stage mitochondrial activity is also affected under exogenous factors. On the other hand, in the regressed group, the initial damage is in the mitochondria, and perhaps at a later stage immune dysfunction is involved.


Asunto(s)
Trastorno del Espectro Autista , Metabolismo Energético , Inflamación , Leucocitos Mononucleares , Mitocondrias , Humanos , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/sangre , Trastorno del Espectro Autista/patología , Niño , Masculino , Femenino , Preescolar , Mitocondrias/metabolismo , Mitocondrias/patología , Leucocitos Mononucleares/metabolismo , Inflamación/metabolismo , Inflamación/patología , Lactante , Consumo de Oxígeno , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Interleucina-1beta/metabolismo , Proteína 1 Similar a Quitinasa-3/metabolismo , Proteína 1 Similar a Quitinasa-3/sangre
3.
Heliyon ; 10(5): e27570, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38495157

RESUMEN

Тhe poor prognosis of patients initially diagnosed at an advanced stage of colorectal cancer (CRC) and the heterogeneity within the same tumor stage define the need for additional predictive biomarkers. Tumor buds are proposed as a poor prognostic factor for CRC, however, they are still not implemented into routine pathology reporting. In turn, the chitinase-3-like protein 1 (CHI3L1) also known as YKL-40, is regarded as a candidate circulating biomarker and therapeutic target in CRC. The aim of our study was to investigate tissue YKL-40 localization and tumor budding in CRC. Thirty-one CRC patients and normal colonic tissues were examined. The correlation between YKL-40 levels, tumor budding and clinocopathological parameters was evaluated by polychoric correlation analysis. The immunohistochemical assessment revealed high YKL-40 expression in CRC in contrast to normal mucosa. Specifically, intense YKL-40 staining was detected in the front of tumor invasion compared with tumor parenchyma and noncancerous tissue. We present novel data for increased YKL-40 expression in tumor buds within the front of tumor invasion. We assume that the combination of this morphological parameter with the tissue level of the pleotropic YKL-40 glycoprotein could serve as a future prognostic biomarker for CRC stratification and treatment.

4.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38473898

RESUMEN

Autism Spectrum Disorder (ASD) is a disturbance of neurodevelopment with a complicated pathogenesis and unidentified etiology. Many children with ASD have a history of "allergic symptoms", often in the absence of mast cell (MC)-positive tests. Activation of MCs by various stimuli may release molecules related to inflammation and neurotoxicity, contributing to the development of ASD. The aim of the present paper is to enrich the current knowledge on the relationship between MCs and ASD by discussing key molecules and immune pathways associated with MCs in the pathogenesis of autism. Cytokines, essential marker molecules for MC degranulation and therapeutic targets, are also highlighted. Understanding the relationship between ASD and the activation of MCs, as well as the involved molecules and interactions, are the main points contributing to solving the enigma. Key molecules, associated with MCs, may provide new insights to the discovery of drug targets for modeling inflammation in ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Niño , Humanos , Mastocitos/metabolismo , Trastorno del Espectro Autista/metabolismo , Inflamación/metabolismo , Trastorno Autístico/metabolismo , Citocinas/metabolismo
5.
Diagnostics (Basel) ; 14(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38535072

RESUMEN

Systemic sclerosis is a complex idiopathic disease originating from an intricate interplay between genetic susceptibility, environmental factors, and epigenetic modifications. This scoping review aims to map the advancements made regarding DNA methylation abnormalities and histone modifications in systemic sclerosis in the past decade. A literature search was conducted using three electronic databases (Scopus, Web of Science and PubMed) to identify relevant articles. A total of 44 studies were selected for this review, demonstrating the critical contribution of epigenetic perturbations in multiple cell types to disease pathogenesis. In conclusion, this scoping review has elucidated the significant discoveries made in the past decade regarding the role of DNA methylation and histone modifications in systemic sclerosis. Further progress in the field could lead to the development of novel treatment possibilities targeting epigenetic marks.

6.
Neuropharmacology ; 249: 109890, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38431049

RESUMEN

Autism Spectrum Disorder (ASD) is a neurodevelopmental disturbance, diagnosed in early childhood. It is associated with varying degrees of dysfunctional communication and social skills, repetitive and stereotypic behaviors. Regardless of the constant increase in the number of diagnosed patients, there are still no established treatment schemes in global practice. Many children with ASD have allergic symptoms, often in the absence of mast cell (MC) positive tests. Activation of MCs may release molecules related to inflammation and neurotoxicity, which contribute to the pathogenesis of ASD. The aim of the present paper is to enrich the current knowledge regarding the relationship between MCs and ASD by providing PPI network analysis-based data that reveal key molecules and immune pathways associated with MCs in the pathogenesis of autism. Network and enrichment analyzes were performed using receptor information and secreted molecules from activated MCs identified in ASD patients. Our analyses revealed cytokines and key marker molecules for MCs degranulation, molecular pathways of key mediators released during cell degranulation, as well as various receptors. Understanding the relationship between ASD and the activation of MCs, as well as the involved molecules and interactions, is important for elucidating the pathogenesis of ASD and developing effective future treatments for autistic patients by discovering new therapeutic target molecules.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Niño , Humanos , Preescolar , Trastorno del Espectro Autista/metabolismo , Mastocitos/metabolismo , Mastocitos/patología , Citocinas/metabolismo , Inflamación/metabolismo
7.
Biomedicines ; 12(3)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38540278

RESUMEN

Technologies and biomaterials for 3D bioprinting have been developing extremely quickly in the past decade as they hold great potential in tissue engineering. This, together with the possibility to differentiate stem cells of different origin into any cell type, raises the hopes in regenerative medicine once again after the initial breakthrough with stem cells in the 1980s. Nevertheless, three decades of 3D bioprinting experiments have shown that the production of functional tissues would take a longer time than anticipated. Cartilage, one of the simplest tissues in the body, consists of only one cell type. It is not vascularised and innervated and does not have lymphatic vessels either, which makes it a perfect target tissue for successful implantation. The tremendous amount of work since the beginning of this century, combining the efforts of bioengineers, material scientists, biologists, and physicians, has culminated in multiple proof-of-concept constructs that have been implanted in animals. However, there is no single reproducible, standardised, widely accessible and accepted strategy that can be readily applied in the clinic. In this review, we focus on the current progress in the field of the 3D biofabrication of articular cartilage and critically assess failures and future challenges.

8.
Rheumatol Int ; 44(1): 57-65, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37985499

RESUMEN

Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease associated by inflammation of the synovial tissue and autoantibody production. Oxidative stress and free radicals are known to be indirectly implicated in joint damage and cartilage destruction in RA. Several studies describe the presence of mitochondrial dysfunction in RA, but few of them follow the dynamics in energy parameters after therapy. The aim of our investigation is to evaluate the direct effect of JAK inhibitors on cellular metabolism (and under induced oxidative stress) in RA patients. Ten newly diagnosed RA patients were included in the study. Peripheral blood mononuclear cells (PBMCs) and plasma were isolated before and 6 months after therapy with JAK inhibitors. A real-time metabolic analysis was performed to assess mitochondrial function and cell metabolism in PBMCs. Sonographic examination, DAS28 and conventional clinical laboratory parameters were determined also prior and post therapy. A significant decrease in proton leak after therapy with JAK inhibitors was found. The increased production of ATP indicates improvement of cellular bioenergetics status. These findings could be related to the catalytic action of JAK inhibitors on oxidative phosphorylation which corresponds to the amelioration of clinical and ultra-sonographic parameters after treatment. Our study is the first to establish the dynamics of mitochondrial parameters in PBMCs from RA patients before and after in vivo therapy with JAK inhibitors.


Asunto(s)
Artritis Reumatoide , Inhibidores de las Cinasas Janus , Humanos , Inhibidores de las Cinasas Janus/uso terapéutico , Proyectos Piloto , Leucocitos Mononucleares/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/uso terapéutico
9.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38003487

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. A growing body of evidence suggests that mitochondrial dysfunction and inflammation play a crucial role as a pathogenetic mechanism in PD. The glycoprotein YKL-40 (CHI3L1) is a potential biomarker involved in inflammation and tumor processes. The aim of the present study was to investigate the metabolic profile of PBMCs from PD patients and to search for a possible relationship between cellular bioenergetics and YKL-40. The study included 18 naïve PD patients and an age-matched control group (HC, n = 7). Patients were diagnosed according to the MDS-PD, the UPDRS, and the Hoen-Yahr scales. Mitochondrial activity was measured by a metabolic analyzer on isolated PBMCs from PD patients. Gene (qPCR) and protein (ELISA) expression levels of YKL40 were investigated. New data are reported revealing changes in the mitochondrial activity and YKL-40 levels in PD patients. Bioenergetic parameters showed increased respiratory reserve capacity in PD compared to HC. The protein levels of YKL-40 were threefold higher in PD. We found a correlation between the YKL-40 protein levels and basal respiration and between YKL-40 and ATP production. These observations suggest an interplay between YKL-40 and mitochondrial function in PD. We assume that the YKL-40 gene and protein levels in combination with changes in mitochondrial function might serve as an additional tool to monitor the clinical course of PD.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Proteína 1 Similar a Quitinasa-3/genética , Proteína 1 Similar a Quitinasa-3/metabolismo , Inflamación , Metaboloma
10.
Cancers (Basel) ; 15(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37835418

RESUMEN

Long-term modelization of cancer as it changes in the human body is a difficult goal, particularly when designing and testing new therapeutic strategies. This becomes even more difficult with metastasis modeling to show chemotherapeutic molecule delivery directly to tumoral cells. Advanced therapeutics, including oncolytic viruses, antibody-based and cell-based therapies are increasing. The question is, are screening tests also evolving? Next-generation therapeutics need equally advanced screening tests, which whilst difficult to achieve, are the goal of our work here, creating models of micro- and macrotumors using 3D bioprinting. We developed advanced colorectal cancer tumor processing techniques to provide options for cellular expansion, microtumor printing, and long-term models, which allow for the evaluation of the kinetics of penetration testing, therapeutic success, targeted therapies, and personalized medicine. We describe how we tested tumors from a primary colorectal patient and, applying 3D bioprinting, matured long-term models for oncolytic metastatic screening. Three-dimensional microtumors were kept alive for the longest time ever recorded in vitro, allowing longitudinal studies, screening of oncolytic viruses and realistic modelization of colorectal cancer. These 3D bioprinted models were maintained for around 6 months and were able to demonstrate the effective delivery of a product to the tumoral environment and represent a step forward in therapeutic screening.

11.
Med Pharm Rep ; 96(3): 310-317, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37577021

RESUMEN

Background/Aim: Squamous cell carcinoma (SCC) is the most frequent cancer of the head and neck area in the oral cavity. Epigenetic alterations in oral and maxillofacial area cancers are urgently needed to be investigated, as the observed changes might have crucial diagnostic value for personalized medicine. Methods: Our study aimed to identify the most frequently hypermethylated tumor suppressor gene promoters in OSCC, followed by correlation analysis with the patients' survival. We evaluated the methylation status of the promoters in a panel of 22 tumor suppressor genes in Romanian (n=9) and Bulgarian (n=12) patient groups suffering from oral and maxillofacial area cancers. The extracted DNA was further digested through EpiTect Methyl II PCR Array System containing methylation-sensitive and methylation-dependent restriction enzymes, followed by specific amplification of the products obtained by qPCR and data analysis using the online platform provided by the producer. Results: Different methylation patterns were observed in the tumor suppressor genes' promoters. Among them, the methylation profile of Cccnd2, Chd1, Cdh13, Cdkn1c, Neurog1, Gstp1, and Runx3 genes further correlated with overall survival rates. Conclusions: Our data emphasize that epigenetic alterations are responsible for the clinical heterogeneity of oral and maxillofacial area cancers and significantly impact on patient survival. Additional investigation on a larger patient cohort should validate these potential biomarkers.

12.
Brain Behav Immun Health ; 30: 100646, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37334258

RESUMEN

Background: Despite advances in autism spectrum disorder (ASD) research and the vast genomic, transcriptomic, and proteomic data available, there are still controversies regarding the pathways and molecular signatures underlying the neurodevelopmental disorders leading to ASD. Purpose: To delineate these underpinning signatures, we examined the two largest gene expression meta-analysis datasets obtained from the brain and peripheral blood mononuclear cells (PBMCs) of 1355 ASD patients and 1110 controls. Methods: We performed network, enrichment, and annotation analyses using the differentially expressed genes, transcripts, and proteins identified in ASD patients. Results: Transcription factor network analyses in up- and down-regulated genes in brain tissue and PBMCs in ASD showed eight main transcription factors, namely: BCL3, CEBPB, IRF1, IRF8, KAT2A, NELFE, RELA, and TRIM28. The upregulated gene networks in PBMCs of ASD patients are strongly associated with activated immune-inflammatory pathways, including interferon-α signaling, and cellular responses to DNA repair. Enrichment analyses of the upregulated CNS gene networks indicate involvement of immune-inflammatory pathways, cytokine production, Toll-Like Receptor signalling, with a major involvement of the PI3K-Akt pathway. Analyses of the downregulated CNS genes suggest electron transport chain dysfunctions at multiple levels. Network topological analyses revealed that the consequent aberrations in axonogenesis, neurogenesis, synaptic transmission, and regulation of transsynaptic signalling affect neurodevelopment with subsequent impairments in social behaviours and neurocognition. The results suggest a defense response against viral infection. Conclusions: Peripheral activation of immune-inflammatory pathways, most likely induced by viral infections, may result in CNS neuroinflammation and mitochondrial dysfunction, leading to abnormalities in transsynaptic transmission, and brain neurodevelopment.

13.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37175443

RESUMEN

At present it is well-defined that autophagy is a fundamental process essential for cell life but its pro-viral and anti-viral role has been stated out with the COVID pandemic. However, viruses in turn have evolved diverse adaptive strategies to cope with autophagy driven host defense, either by blocking or hijacking the autophagy machinery for their own benefit. The mechanisms underlying autophagy modulation are presented in the current review which summarizes the accumulated knowledge on the crosstalk between autophagy and viral infections, with a particular emphasizes on SARS-CoV-2. The different types of autophagy related to infections and their molecular mechanisms are focused in the context of inflammation. In particular, SARS-CoV-2 entry, replication and disease pathogenesis are discussed. Models to study autophagy and to formulate novel treatment approaches and pharmacological modulation to fight COVID-19 are debated. The SARS-CoV-2-autophagy interplay is presented, revealing the complex dynamics and the molecular machinery of autophagy. The new molecular targets and strategies to treat COVID-19 effectively are envisaged. In conclusion, our finding underline the importance of development new treatment strategies and pharmacological modulation of autophagy to fight COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Antivirales/farmacología , Antivirales/uso terapéutico , Antivirales/metabolismo , Autofagia
14.
Bioengineering (Basel) ; 10(3)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36978678

RESUMEN

The global development of technologies now enters areas related to human health, with a transition from conventional to personalized medicine that is based to a significant extent on (bio)printing. The goal of this article is to review some of the published scientific literature and to highlight the importance and potential benefits of using 3D (bio)printing techniques in contemporary personalized medicine and also to offer future perspectives in this research field. The article is prepared according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Web of Science, PubMed, Scopus, Google Scholar, and ScienceDirect databases were used in the literature search. Six authors independently performed the search, study selection, and data extraction. This review focuses on 3D bio(printing) in personalized medicine and provides a classification of 3D bio(printing) benefits in several categories: overcoming the shortage of organs for transplantation, elimination of problems due to the difference between sexes in organ transplantation, reducing the cases of rejection of transplanted organs, enhancing the survival of patients with transplantation, drug research and development, elimination of genetic/congenital defects in tissues and organs, and surgery planning and medical training for young doctors. In particular, we highlight the benefits of each 3D bio(printing) applications included along with the associated scientific reports from recent literature. In addition, we present an overview of some of the challenges that need to be overcome in the applications of 3D bioprinting in personalized medicine. The reviewed articles lead to the conclusion that bioprinting may be adopted as a revolution in the development of personalized, medicine and it has a huge potential in the near future to become a gold standard in future healthcare in the world.

15.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36834787

RESUMEN

The prognosis for patients with relapsed childhood acute lymphoblastic leukaemia (cALL) remains poor. The main reason for treatment failure is drug resistance, most commonly to glucocorticoids (GCs). The molecular differences between prednisolone-sensitive and -resistant lymphoblasts are not well-studied, thereby precluding the development of novel and targeted therapies. Therefore, the aim of this work was to elucidate at least some aspects of the molecular differences between matched pairs of GC-sensitive and -resistant cell lines. To address this, we carried out an integrated transcriptomic and metabolomic analysis, which revealed that lack of response to prednisolone may be underpinned by alterations in oxidative phosphorylation, glycolysis, amino acid, pyruvate and nucleotide biosynthesis, as well as activation of mTORC1 and MYC signalling, which are also known to control cell metabolism. In an attempt to explore the potential therapeutic effect of inhibiting one of the hits from our analysis, we targeted the glutamine-glutamate-α-ketoglutarate axis by three different strategies, all of which impaired mitochondrial respiration and ATP production and induced apoptosis. Thereby, we report that prednisolone resistance may be accompanied by considerable rewiring of transcriptional and biosynthesis programs. Among other druggable targets that were identified in this study, inhibition of glutamine metabolism presents a potential therapeutic approach in GC-sensitive, but more importantly, in GC-resistant cALL cells. Lastly, these findings may be clinically relevant in the context of relapse-in publicly available datasets, we found gene expression patterns suggesting that in vivo drug resistance is characterised by similar metabolic dysregulation to what we found in our in vitro model.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Prednisolona , Humanos , Niño , Prednisolona/farmacología , Glutamina/farmacología , Resistencia a Antineoplásicos/genética , Glucocorticoides/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
16.
Front Oncol ; 12: 1072579, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531016

RESUMEN

Introduction: Although a considerable body of knowledge has been accumulated regarding the early diagnosis and treatment of oral squamous cell carcinoma (OSCC), its survival rates have not improved over the last decades. Thus, deciphering the molecular mechanisms governing oral cancer will support the development of even better diagnostic and therapeutic strategies. Previous studies have linked aberrantly expressed microRNAs (miRNAs) with the development of OSCC. Methods: We combined bioinformatical and molecular methods to identify miRNAs with possible clinical significance as biomarkers in OSCC. A set of 10 miRNAs were selected via an in silico approach by analysing the 3'untranslated regions (3'UTRs) of cancer-related mRNAs such as FLRT2, NTRK3, and SLC8A1, TFCP2L1 and etc. RT-qPCR was used to compare the expression of in silico identified miRNAs in OSCC and normal tissues (n=32). Results: Among the screened miRNAs, miR-21-5p (p < 0.0001), miR-93-5p (p < 0.0197), miR-146b-5p (p <0.0012), miR-155-5p (p < 0.0001), miR-182-5p (p < 0.0001) were significantly overexpressed, whereas miR-133b (p < 0.05) was significantly downregulated in OSCC tissues, a scenario confirmed in two additional OSCC validation cohorts: Regina Elena National Cancer Institute (IRE cohort, N=74) and The Cancer Genome Atlas Data Portal (TCGA cohort, N=354). Initial stage tumors (T1, T2) expressed significantly higher levels of miR-133b (p < 0.0004) compared to more advanced ones (T3, T4). Also, we identified miR-93-5p (p < 0.0003), miR-133b (p < 0.0017) and miR-155-5p (p < 0.0004) as correlated with HPV-induced OSCC. The high expression of these 6 miRNAs as a signature predicted shorter disease-free survival (DFS) and could efficiently distinguish OSCC cases from healthy controls with areas under the curve (AUC) of 0.91 with sensitivity and specificity of 0.98 and 0.6, respectively. Further target identification analysis revealed enrichment of genes involved in FOXO, longevity, glycan biosynthesis and p53 cancer-related signaling pathways. Also, the selected targets were underexpressed in OSCC tissues and showed clinical significance related to overall survival (OS) and DFS. Discussion: Our results demonstrate that a novel panel consisting of miR-21-5p, miR-93-5p, miR-133b, miR-146b-5p, miR-155-5p and miR-182-5p could be used as OSCC-specific molecular signature with diagnostic and prognostic significance related to OS and DFS.

17.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36499325

RESUMEN

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. It is characterized by the accumulation of α-Synuclein aggregates and the degeneration of dopaminergic neurons in substantia nigra in the midbrain. Although the exact mechanisms of neuronal degeneration in PD remain largely elusive, various pathogenic factors, such as α-Synuclein cytotoxicity, mitochondrial dysfunction, oxidative stress, and pro-inflammatory factors, may significantly impair normal neuronal function and promote apoptosis. In this context, neuroinflammation and autophagy have emerged as crucial processes in PD that contribute to neuronal loss and disease development. They are regulated in a complex interconnected manner involving most of the known PD-associated genes. This review summarizes evidence of the implication of neuroinflammation and autophagy in PD and delineates the role of inflammatory factors and autophagy-related proteins in this complex condition. It also illustrates the particular significance of plasma and serum immune markers in PD and their potential to provide a personalized approach to diagnosis and treatment.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo , Neuronas Dopaminérgicas/metabolismo , Autofagia
18.
Cells ; 11(22)2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36428997

RESUMEN

YKL-40 is a heparin- and chitin-binding glycoprotein that belongs to the family of glycosyl hydrolases but lacks enzymatic properties. It affects different (patho)physiological processes, including cancer. In different tumors, YKL-40 gene overexpression has been linked to higher cell proliferation, angiogenesis, and vasculogenic mimicry, migration, and invasion. Because, in colorectal cancer (CRC), the serological YKL-40 level may serve as a risk predictor and prognostic biomarker, we investigated the underlying mechanisms by which it may contribute to tumor progression and the clinical significance of its tissue expression in metastatic CRC. We demonstrated that high-YKL-40-expressing HCT116 and Caco2 cells showed increased motility, invasion, and proliferation. YKL-40 upregulation was associated with EMT signaling activation. In the AOM/DSS mouse model, as well as in tumors and sera from CRC patients, elevated YKL-40 levels correlated with high-grade tumors. In retrospective analyses of six independent cohorts of CRC patients, elevated YKL-40 expression correlated with shorter survival in patients with advanced CRC. Strikingly, high YKL-40 tissue levels showed a predictive value for a better response to cetuximab, even in patients with stage IV CRC and mutant KRAS, and worse sensitivity to oxaliplatin. Taken together, our findings establish that tissue YKL-40 overexpression enhances CRC metastatic potential, highlighting this gene as a novel prognostic candidate, a predictive biomarker for therapy response, and an attractive target for future therapy in CRC.


Asunto(s)
Neoplasias Colorrectales , Lectinas , Animales , Humanos , Ratones , Adipoquinas/metabolismo , Biomarcadores de Tumor , Células CACO-2 , Proteína 1 Similar a Quitinasa-3/genética , Proteína 1 Similar a Quitinasa-3/metabolismo , Neoplasias Colorrectales/metabolismo , Lectinas/genética , Lectinas/metabolismo , Fenotipo , Estudios Retrospectivos , Regulación hacia Arriba
19.
J Funct Biomater ; 13(4)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36412868

RESUMEN

INTRODUCTION: Chlorhexidine (CHX) has been used for some time in clinical practice as a local antiseptic agent with excellent efficacy. The combination of CHX with APRF (Advanced-platelet rich fibrin) membrane has the potential to stimulate tissue regeneration and to provide a bactericidal effect. We hypothesize that this may reduce the rate of infections development and protect cell viability. AIM: The aim of this study was two-fold-to create a stable APRF membrane treated with different concentrations of CHX (0.01% and 0.02%) and to monitor its effect on the viability of PDL cells in vitro. This benefits the introduction of a new protocol for APRF membrane production -CHX-PRF and enriches the available evidence on the effect of this antiseptic agent on PDL (Periodontal ligament) cells. MATERIALS AND METHODS: APRF membranes were prepared by the addition of two concentrations (0.01% and 0.02%) of CHX. Membranes without the antiseptic were also prepared and used as control samples. PDL cells were cultivated on the membranes for 72 h. Cell number and vitality were examined by fluorescent cell viability assays. RESULTS: Our results demonstrated that a concentration of 0.01% CHX allowed the production of a stable APRF membrane. This concentration slightly reduced the viability of PDL cells to 96.7%, but significantly decreased the average number of cells attached to the membrane-149 ± 16.5 cells/field compared to controls -336 ± 26.9 cells/field. APRF-CHX 0.02% membranes were unstable, indicating a dose-dependent cytotoxic effect of CHX. CONCLUSIONS: The introduced novel protocol leads to the production of a new type of APRF membrane-CHX-PRF. The incorporation of an antiseptic into the APRF membrane can improve its bactericidal activity and might serve as an important step for the prevention of postoperative infections.

20.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36233217

RESUMEN

BACKGROUND: NGF is a molecule with a pleiotropic role, affecting neuro-immune functions, energy homeostasis, and synaptic plasticity. The mechanisms of NGF-induced neuronal differentiation are well established, but its effect on mitochondria in autism spectrum disorder (ASD) is still unclear. We hypothesize that NGF-induced neuronal development requires large amounts of energy, and mitochondria in ASD are overloaded to meet the new functional requirements. METHOD: The study includes primary diagnosed ASD children. Peripheral blood mononuclear cells (PBMCs) and plasma were obtained from both patients and typically developing children (TDC). PBMCs were analyzed with Seahorse XFp, and plasma NGF protein levels were measured. RESULTS: We detected nearly 50% higher NGF levels and approximately 40% elevation in spare respiratory capacity in ASD compared to TDC. These findings are consistent with the observed difference in maximal respiration, which was also significantly higher in the patient group. Both mitochondrial respiration and NGF plasma levels exhibit a strong potential to discriminate children with ASD from TDC. CONCLUSIONS: This study is the first to link elevated NGF with mitochondrial respiration and altered energy homeostasis in ASD. High NGF correlates with basic bioenergetic signatures that may be used as a screening tool to improve early diagnosis and clinical follow-up in ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno del Espectro Autista/diagnóstico , Niño , Humanos , Leucocitos Mononucleares/metabolismo , Mitocondrias/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Respiración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...