Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 293(1): 132-147, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29133525

RESUMEN

Autophagy is a quality-control mechanism that helps to maintain cellular homeostasis by removing damaged proteins and organelles through lysosomal degradation. During autophagy, signaling events lead to the formation of a cup-shaped structure called the phagophore that matures into the autophagosome. Recruitment of the autophagy-associated Atg12-5-16L1 complex to Wipi2-positive phagophores is crucial for producing microtubule-associated protein 1 light chain 3-II (LC3-II), which is required for autophagosome formation. Here, we explored the role of the autophagy receptor optineurin (Optn) in autophagosome formation. Fibroblasts from Optn knock-out mouse showed reduced LC3-II formation and a lower number of autophagosomes and autolysosomes during both basal and starvation-induced autophagy. However, the number of Wipi2-positive phagophores was not decreased in Optn-deficient cells. We also found that the number of Atg12/16L1-positive puncta and recruitment of the Atg12-5-16L1 complex to Wipi2-positive puncta are reduced in Optn-deficient cells. Of note, Optn was recruited to Atg12-5-16L1-positive puncta, and interacted with Atg5 and also with Atg12-5 conjugate. A disease-associated Optn mutant, E478G, defective in ubiquitin binding, was also defective in autophagosome formation and recruitment to the Atg12-5-16L1-positive puncta. Moreover, we noted that Optn phosphorylation at Ser-177 was required for autophagosome formation but not for Optn recruitment to the phagophore. These results suggest that Optn potentiates LC3-II production and maturation of the phagophore into the autophagosome, by facilitating the recruitment of the Atg12-5-16L1 complex to Wipi2-positive phagophores.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Portadoras/metabolismo , Proteínas del Ojo/metabolismo , Proteínas de la Membrana/metabolismo , Factor de Transcripción TFIIIA/metabolismo , Animales , Autofagosomas/metabolismo , Autofagia/fisiología , Proteínas de Ciclo Celular , Femenino , Células HEK293 , Humanos , Masculino , Proteínas de Transporte de Membrana , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Unión a Fosfato , Unión Proteica
2.
PLoS One ; 7(6): e38685, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22715406

RESUMEN

WD-repeat proteins are very diverse, yet these are structurally related proteins that participate in a wide range of cellular functions. WDR13, a member of this family, is conserved from fishes to humans and localizes into the nucleus. To understand the in vivo function(s) of Wdr13 gene, we have created and characterized a mutant mouse strain lacking this gene. The mutant mice had higher serum insulin levels and increased pancreatic islet mass as a result of enhanced beta cell proliferation. While a known cell cycle inhibitor, p21, was downregulated in the mutant islets, over expression of WDR13 in the pancreatic beta cell line (MIN6) resulted in upregulation of p21, accompanied by retardation of cell proliferation. We suggest that WDR13 is a novel negative regulator of the pancreatic beta cell proliferation. Given the higher insulin levels and better glucose clearance in Wdr13 gene deficient mice, we propose that this protein may be a potential candidate drug target for ameliorating impaired glucose metabolism in diabetes.


Asunto(s)
Proliferación Celular , Hiperinsulinismo/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas Nucleares/deficiencia , Animales , Proteínas de Ciclo Celular , Línea Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/biosíntesis , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Regulación hacia Abajo/genética , Hiperinsulinismo/genética , Hiperinsulinismo/patología , Insulina/genética , Insulina/metabolismo , Células Secretoras de Insulina/patología , Ratones , Ratones Noqueados , Proteínas Nucleares/metabolismo
3.
J Biosci ; 36(4): 649-57, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21857111

RESUMEN

RNA interference (RNAi) pathways regulate self-renewal and differentiation of embryonic stem (ES) cells. Argonaute 2 (Ago2) is a vital component of RNA-induced silencing complex (RISC) and the only Ago protein with slicer activity. We generated Ago2-deficient ES cells by conditional gene targeting. Ago2-deficient ES cells are defective in the small-RNA-mediated gene silencing and are significantly compromised in biogenesis of mature microRNA. The self-renewal rate of Ago2-deficient ES cells is affected due to failure of silencing of Cdkn1a by EScell- specific microRNAs (miRNA) in the absence of Ago2. Interestingly, unlike Dicer- and Dgcr8-deficient ES cells, they differentiate to all three germ layers both in vivo and in vitro. However, early differentiation of Ago2-deficient ES cells is delayed by 2-4 days as indicated by persistence of higher levels of self-renewal/ pluripotency markers during differentiation. Further, appearance of morphological and differentiation markers is also delayed during the differentiation. In this study we show that Ago2 is essential for normal self-renewal and differentiation. Also, our data suggest that self-renewal and differentiation of ES cells are regulated by both siRNA and miRNA pathways.


Asunto(s)
Proteínas Argonautas/genética , Desarrollo Embrionario/genética , Células Madre Embrionarias/metabolismo , MicroARNs/genética , Proteínas Nucleares/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Animales , Proteínas Argonautas/metabolismo , Biomarcadores/análisis , Western Blotting , Diferenciación Celular/genética , Línea Celular , Células Madre Embrionarias/citología , Marcación de Gen , Genes Reporteros , Estratos Germinativos/citología , Estratos Germinativos/metabolismo , Luciferasas/análisis , Ratones , MicroARNs/metabolismo , Proteínas Nucleares/metabolismo , ARN Interferente Pequeño/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/genética
4.
Proc Natl Acad Sci U S A ; 103(21): 8000-5, 2006 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-16698927

RESUMEN

Acquisition of milk production capabilities by an ancestor of mammals is at the root of mammalian evolution. Milk casein micelles are a primary source of amino acids and calcium phosphate to neonates. To understand the role of kappa-casein in lactation, we have created and characterized a null mouse strain (Csnk-/-) lacking this gene. The mutant kappa-casein allele did not affect the expression of other milk proteins in Csnk-/- females. However, these females did not suckle their pups and failed to lactate because of destabilization of the micelles in the lumina of the mammary gland. Thus, kappa-casein is essential for lactation and, consequently, for the successful completion of the process of reproduction in mammals. In view of the extreme structural conservation of the casein locus, as well as the phenotype of Csnk-/- females, we propose that the organization of a functional kappa-casein gene would have been one of the critical events in the evolution of mammals. Further, kappa-casein variants are known to affect the industrial properties of milk in dairy animals. Given the expenses and the time scale of such experiments in livestock species, it is desirable to model the intended genetic modifications in mice first. The mouse strain that we have created would be a useful model to study the effect of kappa-casein variants on the properties of milk and/or milk products.


Asunto(s)
Caseínas/genética , Regulación de la Expresión Génica , Lactancia/genética , Alelos , Animales , Evolución Molecular , Femenino , Vectores Genéticos , Ratones , Ratones Transgénicos , Micelas , Microscopía de Fuerza Atómica , Modelos Genéticos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...