Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioprocess Biosyst Eng ; 47(11): 1915-1928, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39127828

RESUMEN

This research investigated the physicochemical properties and biological activities of green-synthesized copper oxide nanoparticles (CuO NPs) via Moringa peregrina extract, graphene oxide (GO), and their composite (CuO-GO). SEM revealed the morphology and structure, indicating polygonal CuO NPs, thin wrinkled sheets of GO, and a combination of CuO NPs and GO in the nanocomposite. EDS confirmed the elemental composition and distribution. XRD analysis confirmed the crystalline monoclinic structure of CuO NPs and GO, as well as their composite, CuO-GO, with characteristic peaks. DLS analysis exhibited distinct size distributions, with CuO NPs showing the narrowest range. BET surface area analysis revealed mesoporous structures for all materials, with the nanocomposite showing enhanced surface area and pore volume. Anticancer assays on MCF-7 and normal NIH/3T3 cells demonstrated CuO-GO's superior cytotoxicity against cancer cells, with minimal effects on normal cells, suggesting selective cytotoxicity. Moreover, antibacterial assays against Pseudomonas aeruginosa and Staphylococcus aureus indicated CuO-GO's potent inhibitory activity. The composite's synergistic effects were evidenced by its lower minimum inhibitory concentration (MIC) compared to individual components. In conclusion, this study elucidated the promising biomedical applications of CuO NPs, GO, and their nanocomposite, particularly in cancer treatment and antibacterial therapies, showcasing their potential as multifunctional nanomaterials.


Asunto(s)
Antibacterianos , Antineoplásicos , Cobre , Grafito , Tecnología Química Verde , Nanopartículas del Metal , Moringa , Extractos Vegetales , Grafito/química , Cobre/química , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ratones , Animales , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Nanopartículas del Metal/química , Moringa/química , Células MCF-7 , Células 3T3 NIH , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Nanocompuestos/química
2.
Heliyon ; 10(10): e31024, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38779023

RESUMEN

Sonochemical-assisted method was used to synthesize copper metal-organic frameworks (Cu-MOF) nanostructures. The final products were examined by related techniques such as XRD patterns, SEM image, BET N2 adsorption/desorption technique and FTIR spectrum. Microtiter plates microbiological assay were used to investigate antibacterial properties and the results were analyzed using ANOVA and Tukey HSD tests. The results showed that Cu-MOF nanostructures have a mesoporous nature with an average particle size distribution around 60 nm. The final product had the property of preventing the growth of all tested bacteria in certain concentrations. Minimum Inhibitory Concentration (MIC) values were observed in the range of 30-100 ppm. It was also discovered that this nanostructure can not kill bacteria completely. In addition, the minimal inhibitory concentration for biofilm growth (MIC-B) of the nanostructure was investigated. The MIC-B analyzes demonstrated that the growth of bacterial biofilm decreased with increasing Cu-MOF concentration.

3.
Naunyn Schmiedebergs Arch Pharmacol ; 397(9): 7017-7036, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38630254

RESUMEN

We aimed to perform a comprehensive study on the development and characterization of silymarin (Syl)-loaded niosomes as potential drug delivery systems. The results demonstrate significant novelty and promising outcomes in terms of morphology, size distribution, encapsulation efficiency, in vitro release behavior, free energy profiles of Syl across the niosome bilayer, hydrogen bonding interactions, antimicrobial properties, cytotoxicity, and in vivo evaluations. The physical appearance, size, and morphology assessment of free niosomes and Syl-loaded niosomes indicated stable and well-formed vesicular structures suitable for drug delivery. Transmission electron microscopy (TEM) analysis revealed spherical shapes with distinct sizes for each formulation, confirming uniform distribution. Dynamic light scattering (DLS) analysis confirmed the size distribution results with higher polydispersity index for Syl-loaded niosomes. The encapsulation efficiency of Syl in the niosomes was remarkable at approximately 91%, ensuring protection and controlled release of the drug. In vitro release studies showed a sustained release profile for Syl-loaded niosomes, enhancing therapeutic efficacy over time. Free energy profiles analysis identified energy barriers hindering Syl permeation through the niosome bilayer, emphasizing challenges in drug delivery system design. Hydrogen bonding interactions between Syl and niosome components contributed to energy barriers, impacting drug permeability. Antimicrobial assessments revealed significant differences in inhibitory effects against S. aureus and E. coli. Cytotoxicity evaluations demonstrated the superior tumor-killing potential of Syl-loaded niosomes compared to free Syl. In vivo studies indicated niosome formulations' safety profiles in terms of liver and kidney parameters compared to bulk Syl, showcasing potential for clinical applications. Overall, this research highlights the promising potential of Syl-loaded niosomes as effective drug delivery systems with enhanced stability, controlled release, and improved therapeutic outcomes.


Asunto(s)
Liposomas , Silimarina , Silimarina/administración & dosificación , Silimarina/química , Silimarina/farmacología , Silimarina/farmacocinética , Animales , Humanos , Liberación de Fármacos , Sistemas de Liberación de Medicamentos , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Masculino , Simulación por Computador , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Nanopartículas/química , Tamaño de la Partícula , Portadores de Fármacos/química
4.
Cell Biochem Funct ; 42(2): e3964, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38439154

RESUMEN

Kaempferol, a flavonoid compound found in various fruits, vegetables, and medicinal plants, has garnered increasing attention due to its potential neuroprotective effects in neurological diseases. This research examines the existing literature concerning the involvement of kaempferol in neurological diseases, including stroke, Parkinson's disease, Alzheimer's disease, neuroblastoma/glioblastoma, spinal cord injury, neuropathic pain, and epilepsy. Numerous in vitro and in vivo investigations have illustrated that kaempferol possesses antioxidant, anti-inflammatory, and antiapoptotic properties, contributing to its neuroprotective effects. Kaempferol has been shown to modulate key signaling pathways involved in neurodegeneration and neuroinflammation, such as the PI3K/Akt, MAPK/ERK, and NF-κB pathways. Moreover, kaempferol exhibits potential therapeutic benefits by enhancing neuronal survival, attenuating oxidative stress, enhancing mitochondrial calcium channel activity, reducing neuroinflammation, promoting neurogenesis, and improving cognitive function. The evidence suggests that kaempferol holds promise as a natural compound for the prevention and treatment of neurological diseases. Further research is warranted to elucidate the underlying mechanisms of action, optimize dosage regimens, and evaluate the safety and efficacy of this intervention in human clinical trials, thereby contributing to the advancement of scientific knowledge in this field.


Asunto(s)
Enfermedades del Sistema Nervioso , Fármacos Neuroprotectores , Humanos , Neuroprotección , Enfermedades Neuroinflamatorias , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Quempferoles/farmacología , Quempferoles/uso terapéutico , Fosfatidilinositol 3-Quinasas , Enfermedades del Sistema Nervioso/tratamiento farmacológico
5.
Int J Biol Macromol ; 262(Pt 1): 130021, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38331063

RESUMEN

This review article highlights the innovative role of metal-organic frameworks (MOFs) in addressing global healthcare challenges related to microbial infections. MOFs, comprised of metal nodes and organic ligands, offer unique properties that can be applied in the treatment and diagnosis of these infections. Traditional methods, such as antibiotics and conventional diagnostics, face issues such as antibiotic resistance and diagnostic limitations. MOFs, with their highly porous and customizable structure, can encapsulate and deliver therapeutic or diagnostic molecules precisely. Their large surface area and customizable pore structures allow for sensitive detection and selective recognition of microbial pathogens. They also show potential in delivering therapeutic agents to infection sites, enabling controlled release and possible synergistic effects. However, challenges like optimizing synthesis techniques, enhancing stability, and developing targeted delivery systems remain. Regulatory and safety considerations for clinical translation also need to be addressed. This review not only explores the potential of MOFs in treating and diagnosing microbial infections but also emphasizes their unique approach and discusses existing challenges and future directions.


Asunto(s)
Estructuras Metalorgánicas , Antibacterianos/uso terapéutico , Porosidad
6.
Gels ; 9(9)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37754429

RESUMEN

Hydrogel scaffold has been widely applied as drug delivery systems for treating skin injuries. However, the poor drug loading and rapid drug release of hydrogel restricted their application. In the current study, we present a nanoliposome containing sulforaphane (SF) as a nano-drug delivery system that is encapsulated within the scaffold hydrogel system to overcome these limitations and improve wound healing. The hydrogel substrate consisting of 10% polyvinyl alcohol (PVA)/5% polyethylene glycol 400 (PEG400) was prepared by the freeze-thaw method, and the nanoliposomal system was manufactured by the thin film hydration method at different molar ratios of cholesterol: SPC: DPPC: DSPE-PEG2000. The nanoliposome and hydrogel system was characterized by physicochemical analyses. The findings achieved from the optimization of the sulforaphane-loaded nanoliposome (SFNL) displayed an increase in the molar ratio of SPC, leading to a higher entrapment efficiency and a gradual release profile. Narrow size distribution, optimal electrical charge, and the lack of molecular interactions between SF and nanoliposome components in the FTIR analysis make SFNL a suitable drug delivery system for the wound healing process. The obtained SFNL-encapsulated freeze-thawed hydrogel system has sufficient and specific swelling ability at different pH values and increased mechanical strength and elongation. Additionally, the release pattern of SFNL at different pH values showed that the release of SF from liposomes depends on the pH value of the environment and accelerates in line with decreasing pH values. Encapsulation of nanoliposomal SF in the hydrogel structure provides a sustained release pattern of SF compared to its free form and increased as the pH environments continued to raise. The cytotoxicity and cell uptake of SFNL-loaded hydrogels against human skin fibroblasts (HFF cell line) were investigated. The in vitro analyses displayed that the toxicity properties of SF and SFNL were dose-dependent, and SFNL exhibited lower toxicity compared to free SF. Furthermore, the proper cell compatibility of the prepared hydrogel against the HFF cell line was confirmed by the MTT assay. These findings imply that the hydrogel scaffold loaded with SFNL may have wound-healing potential.

7.
Heliyon ; 9(5): e15495, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37153425

RESUMEN

Doxorubicin (DOX) is an effective anticancer drug used for the treatment of osteosarcoma. Liposomal nanocarriers for doxorubicin administration are now regarded as one of the most promising approaches to overcome multiple drug resistance and adverse side effects. The use of hydrogel as a 3D scaffold to mimic the cellular environment and provide comparable biological conditions for deeper investigations of cellular processes has attracted considerable attention. This study aimed to evaluate the impact of liposomal doxorubicin on the osteosarcoma cell line in the presence of alginate hydrogel as a three-dimensional scaffold. Different liposomal formulations based on cholesterol, phospholipids, and surfactants containing doxorubicin were developed using the thin-layer hydration approach to improve therapeutic efficacy. The final selected formulation was superficially modified using DSPE-mPEG2000. A three-dimensional hydrogel culture model with appropriate structure and porosity was synthesized using sodium alginate and calcium chloride as crosslinks for hydrogel. Then, the physical properties of liposomal formulations, such as mechanical and porosity, were characterized. The toxicity of the synthesized hydrogel was also assessed. Afterward, the cytotoxicity of nanoliposomes was analyzed on the Saos-2 and HFF cell lines in the presence of a three-dimensional alginate scaffold using the MTT assay. The results indicated that the encapsulation efficiency, the amount of doxorubicin released within 8 h, the mean size of vesicles, and the surface charge were 82.2%, 33.0%, 86.8 nm, and -4.2 mv, respectively. As a result, the hydrogel scaffolds showed sufficient mechanical resistance and suitable porosity. The MTT assay demonstrated that the synthesized scaffold had no cytotoxicity against cells, while nanoliposomal DOX exhibited marked toxicity against the Saos-2 cell line in the 3D culture medium of alginate hydrogel compared to the free drug in the 2D culture medium. Our research showed that the 3D culture model physically resembles the cellular matrix, and nanoliposomal DOX with proper size could easily penetrate into cells and cause higher cytotoxicity compared to the 2D cell culture.

8.
Materials (Basel) ; 15(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36500088

RESUMEN

In order to improve product format quality and material flexibility, variety of application, and cost-effectiveness, SiC, ZrO2, and Al hybrid composites were manufactured in the research utilizing the powder metallurgy (PM) technique. A model was created to predict the tribological behavior of SiC-ZrO2-Al hybrid composites using statistical data analysis and gene expression programming (GEP) based on artificial intelligence. For the purpose of examining the impact of zirconia concentration, sliding distance, and applied stress on the wear behavior of hybrid composites, a comprehensive factor design of experiments was used. The developed GEP model was sufficiently robust to achieve extremely high accuracy in the prediction of the determine coefficient (R2), the root mean square error (RMSE), and the root relative square error (RRSE). The maximum state of the RMSE was 0.4357 for the GEP-1 (w1) model and the lowest state was 0.7591 for the GEP-4 (w1) model, while the maximum state of the RRSE was 0.4357 for the GEP-1 (w1) model and the minimum state was 0.3115 for the GEP-3 model (w1).

9.
Heliyon ; 8(12): e12193, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36578390

RESUMEN

In the biomedical sciences, particularly in wound healing, tissue engineering, and regenerative medicine, the development of natural-based biomaterials as a carrier has revealed a wide range of advantages. Tissue engineering is one of the therapeutic approaches used to replace damaged tissue. Polymers have received a lot of attention for their beneficial interactions with cells, but they have some drawbacks, such as poor mechanical properties. Due to their relatively large surface area, nanoparticles can cause significant changes in polymers and improve their mechanical properties. The nanoparticles incorporated into biomaterial scaffolds have been associated with positive effects on cell adhesion, viability, proliferation, and migration in the majority of studies. This review paper discusses recent applications of polymer-nanoparticle composites in the development of tissue engineering scaffolds, as well as the effects of these nanomaterials in the fields of cardiovascular, neural, bone, and skin tissue engineering.

10.
BMC Chem ; 16(1): 93, 2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371207

RESUMEN

Metal organic frameworks (MOFs) have received a lot of attention in the research community due to their unique physical properties, which make them ideal materials for targeted drug delivery systems. In this paper, we describe the synthesis of a non-toxic La-based MOF with 3,4-dihydroxycinnamic acid (3,4-DHCA) as a linker. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), nitrogen adsorption-desorption measurements, and X-ray powder diffraction (XRD) have all been used to characterize it thoroughly. The La-based MOF showed good biocompatibility with the human breast cancer cell line MDA-MB-468. The ability of 3,4-DHCA to treat MDA-MB-468 cells was confirmed by 40.35% cell viability with La-based MOF. Based on the findings, La-based MOF can be recommended as a promising candidate for anticancer delivery.

11.
Front Chem ; 10: 823785, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372272

RESUMEN

Mesoporous silica nanoparticles (MSNs) are widely used as a promising candidate for drug delivery applications due to silica's favorable biocompatibility, thermal stability, and chemical properties. Silica's unique mesoporous structure allows for effective drug loading and controlled release at the target site. In this review, we have discussed various methods of MSNs' mechanism, properties, and its drug delivery applications. As a result, we came to the conclusion that more in vivo biocompatibility studies, toxicity studies, bio-distribution studies and clinical research are essential for MSN advancement.

12.
BMC Chem ; 16(1): 10, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35248138

RESUMEN

The ultrasonic assisted reverse micelle method (UARM) was used to synthesize Cu-MOF from Cu(NO3)2·3H2O and 2,6-pyridine dicarboxylic acid in a 1:1 molar proportion. It has been characterized using FT-IR, XRD, nitrogen adsorption analysis, SEM and TEM-EDX. The morphology of Cu-MOFs was spherical, with an average particle size distribution of less than 100 nm. Using BET analysis, the surface area of Cu-MOF was found to be 284.94 m2/g. The porous morphology of Cu-MOF was also suggested by SEM and TEM analyses. It has anticancer properties against MCF-7 breast cancer cells. Cytotoxicity testing was performed on MCF-7 breast cancer cells using the MTT cell viability assay, and cell proliferation and viability were found to be approximately 24% higher than the control.

13.
Front Chem ; 9: 784461, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917591

RESUMEN

In this study, novel nanostructures of aluminum base metal-organic framework (Al-MOF) samples were synthesized using a sustainable, non-toxic, and cost-effective green synthesis route. Satureja hortensis extract was used as an effective source of linker for the development of the Al-MOF structures. The Fourier-transformed infrared (FTIR) spectrum confirmed the presence of characterization bonds related to the Al-MOF nanostructures synthesized by the green synthesis route. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses revealed that the sample synthesized by Na2-CA was composed of multilayers, although it was agglomerated, but it had dispersed and occurred in spherical particles, indicating active organic matter. N2 adsorption/desorption isotherms demonstrated the significant porosity of the Al-MOF samples that facilitate the high potential of these nanostructures in medical applications. The anticancer treatment of Al-MOF samples was performed with different concentrations using the MTT standard method with untreated cancer cells for 24 and 48 h periods. The results exhibited the significant anticancer properties of Al-MOF samples developed in this study when compared with other MOF samples. Thus, the development of a novel Al-MOF and its application as a natural linker can influence the anticancer treatment of the samples. According to the results, the products developed in this study can be used in more applications such as biosensors, catalysts, and novel adsorbents.

15.
Front Chem ; 9: 722990, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34900931

RESUMEN

In this paper, we have reported an innovative greener method for developing copper-metal organic frameworks (Cu-MOFs) using caffeic acid (CA) as a linker extracted from Satureja hortensis using ultrasonic bath. The density functional theory is used to discuss the Cu-MOF-binding reaction mechanism. In order to achieve a discrepancy between the energy levels of the interactive precursor orbitals, the molecules have been optimized using the B3LYP/6-31G method. The Taguchi method was used to optimize the key parameters for the synthesis of Cu-MOF. FT-IR, XRD, nitrogen adsorption, and SEM analyses are used to characterize it. The adsorption/desorption and SEM analyses suggested that Cu-MOF has a larger surface area of 284.94 m2/g with high porosity. Cu-MOF has shown anticancer activities against the human breast cancer (MDA-MB-468) cell lines, and it could be a potent candidate for clinical applications.

16.
BMC Chem ; 15(1): 60, 2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-34740383

RESUMEN

BACKGROUND: A chromium-based metal organic framework was synthesized and employed as an efficient sorbent for pipette tip micro-solid phase extraction and preconcentration of parabens from wastewater and shampoo samples up to sub-ppb level before their spectrophotometric analysis. RESULTS: Factors affecting preconcentration including volume and type of solvent, amount of sorbent, number of extraction, and volume and pH of samples were optimized employing one-variable-at-a-time and response surface methodology. Obtained analytical characteristics of the method proves its usefulness for analysis of real samples. Linear range of the method for parabens was 1.0-200.0 µg/L. Detection limit of the protocol was 0.24 µg/L for propyl paraben and 0.25 µg/L for methyl paraben. Reproducibility of the protocol defined as % RSD was better than 5.78%. Synthesized adsorbent can be re-used for at least 20 extractions. CONCLUSION: The method showed a good detection limit and precision for determination of methyl- and propyl-paraben in wastewater and shampoo samples.

17.
Int J Biol Macromol ; 192: 1292-1303, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34687760

RESUMEN

In this study, due to the favorable properties of MOF compounds and fibrous materials, new nanostructures of Zr-MOF/PVP nanofibrous composites were synthesized by electrospinning procedure. The related features of these samples were characterized by relevant analyzes, including SEM, BET surface area analysis, XRD, and FTIR spectroscopy. The final product showed significant properties such as small particle size distribution, large surface area, and high crystallinity. This strategy for producing these nanostructures could lead to new compounds as novel alternative materials for biological applications. Lipase MG10 was successfully immobilized on the mentioned nanofibrous composites and biochemically characterized. The lipase activity of free and immobilized lipases was considered by measuring the absorbance of pNPP (500 µM in 40 mM Tris/HCl buffer, pH 7.8, and 0.01% Triton X100) at 37 °C for 30 min. Different concentrations of glutaraldehyde, different crosslinking times, different times of immobilization, different enzyme loading, and different pH values have been optimized. Results showed that the optimized immobilization condition was achieved in 2.5% glutaraldehyde, after 2 h of crosslinking time, after 6 h immobilization time, using 180 mg protein/g support at pH 9.0. The immobilized enzyme was also totally stable after 180 min incubation at 60 °C. The free enzyme showed the maximum activity at pH 9.0, but the optimal pH of the immobilized lipase was shifted about 1.5 pH units to the alkaline area. The immobilized lipase showed about 2.7 folds (78%) higher stability than the free enzyme at 50 °C. Some divalent metal ions, including Cu2+ (22%), Co2+ (37%), Mg2+ (12%), Hg2+ (11%), and Mn2+ (17%) enhanced the enzyme activity of immobilized enzyme. The maximum biodiesel production (27%) from R. communis oil was obtained after 18 h of incubation by lipase MG10. The immobilized lipase displayed high potency in biodiesel production, about 83% after 12 h of incubation. These results indicated the high potency of Zr-MOF/PVP nanofibrous composites for efficient lipase immobilization.


Asunto(s)
Enzimas Inmovilizadas , Lipasa/química , Nanofibras/química , Polímeros/química , Proteínas Bacterianas , Biocombustibles , Fenómenos Químicos , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Cinética , Lipasa/aislamiento & purificación , Nanofibras/ultraestructura , Nanoestructuras/química , Polivinilos/química , Pirrolidinas/química , Solventes/química , Análisis Espectral
18.
Materials (Basel) ; 14(13)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34279276

RESUMEN

Head and neck cancer (HNC) is a category of cancers that typically arise from the nose-, mouth-, and throat-lining squamous cells. The later stage of HNC diagnosis significantly affects the patient's survival rate. This makes it mandatory to diagnose this cancer with a suitable biomarker and imaging techniques at the earlier stages of growth. There are limitations to traditional technologies for early detection of HNC. Furthermore, the use of nanocarriers for delivering chemo-, radio-, and phototherapeutic drugs represents a promising approach for improving the outcome of HNC treatments. Several studies with nanostructures focus on the development of a targeted and sustained release of anticancer molecules with reduced side effects. Besides, nanovehicles could allow co-delivering of anticancer drugs for synergistic activity to counteract chemo- or radioresistance. Additionally, a new generation of smart nanomaterials with stimuli-responsive properties have been developed to distinguish between unique tumor conditions and healthy tissue. In this light, the present article reviews the mechanisms used by different nanostructures (metallic and metal oxide nanoparticles, polymeric nanoparticles, quantum dots, liposomes, nanomicelles, etc.) to improve cancer diagnosis and treatment, provides an up-to-date picture of the state of the art in this field, and highlights the major challenges for future improvements.

19.
Heliyon ; 7(6): e07250, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34189304

RESUMEN

Greener synthetic methods are becoming more popular as a means of reducing environmental pollution caused by reaction byproducts. Another important advantage of green methods is their low cost and the abundance of raw materials. Herein, we investigate the green Au nanoclusters (NCs) using microorganisms (bacteria and fungi) and plant extraction with various shapes and development routes. Natural products derived from plants, tea, coffee, banana, simple amino acids, enzyme, sugar, and glucose have been used as reductants and as capping agents during synthesis in literature. The synthesis techniques are generally chemical, physical and green methods. Green synthesis of Au NCs using bacteria and fungi can be divided into intracellular and extracellular. In an intracellular manner, bacterial cells are implanted in a culture medium containing salt and heated under suitable growth conditions. However, in an extracellular manner, the Au ions are directed from the outside into the cell. Thus, these methods are considered as a better alternative to chemical and physical synthesis. The research on green synthesis of Au nanoparticles (NPs) and its influence on their size and morphology are summarized in this review.

20.
Int J Biol Macromol ; 173: 366-378, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33453257

RESUMEN

In the present study, ultrasound irradiation was utilized to synthesize a novel zinc metal-organic framework (MOF). Scanning electron microscopic images, exhibited homogenous morphology with a nano-sized distribution of the Zn-MOF structure as also confirmed by X-ray diffraction patterns. Following, physical immobilization of Lepidium draba peroxidase (LDP) were optimized on the Zn-MOF in phosphate buffer (50 mM, pH 6.5), ratio amount of MOF/enzyme; 7/1 after shaking for 15 min at 25 °C, with high protein loading of 109.9 mg/g and immobilization yield of 93.3%. Immobilized enzyme (IE) exhibited more than 330% enhanced specific activity and also exhibited more than 150% specific affinity to its substrate (3,3',5,5'-tetramethylbenzidine) with respect to the free enzyme (FE). Optimum temperature of the IE was obtained at 20 °C while its was 25 °C for the FE, and thermostability of the IE augmented at temperature of 30 °C and 40 °C by the factors of 104 and 108% respectively. pH stability under neutral and basic condition and storage stability of the IE improved with respect to the FE as well as its structural stability (Tm; 73 °C for IE vs. 63 °C for FE). Furthermore, immobilization is accompanied with alteration on the enzyme structure as revealed by the intrinsic and extrinsic fluorescence spectra.


Asunto(s)
Lepidium/enzimología , Estructuras Metalorgánicas/síntesis química , Peroxidasa/metabolismo , Zinc/química , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Cinética , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Microscopía Electrónica de Rastreo , Nanoestructuras , Tamaño de la Partícula , Peroxidasa/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...