RESUMEN
Congenital heart disease (CHD) has, despite significant improvements in patient survival, increasingly become associated with neurological deficits during infancy that persist into adulthood. These impairments afflict a wide range of behavioral domains including executive function, motor learning and coordination, social interaction, and language acquisition, reflecting alterations in multiple brain areas. In the past few decades, it has become clear that CHD is highly genetically heterogeneous, with large chromosomal aneuploidies and copy number variants (CNVs) as well as single nucleotide polymorphisms (SNPs) being implicated in CHD pathogenesis. Intriguingly, many of the identified loss-of-function genetic variants occur in genes important for primary cilia integrity and function, hinting at a key role for primary cilia in CHD. Here we review the current evidence for CHD primary cilia associated genetic variants, their independent functions during cardiac and brain development and their influence on behavior. We also highlight the role of environmental exposures in CHD, including stressors such as surgical factors and anesthesia, and how they might interact with ciliary genetic predispositions to determine the final neurodevelopmental outcome. The multifactorial nature of CHD and neurological impairments linked with it will, on one hand, likely necessitate therapeutic targeting of molecular pathways and neurobehavioral deficits shared by disparate forms of CHD. On the other hand, strategies for better CHD patient stratification based on genomic data, gestational and surgical history, and CHD complexity would allow for more precise therapeutic targeting of comorbid neurological deficits.
RESUMEN
Oxidative/inflammatory stresses due to cardiopulmonary bypass (CPB) cause prolonged microglia activation and cortical dysmaturation, thereby contributing to neurodevelopmental impairments in children with congenital heart disease (CHD). This study found that delivery of mesenchymal stromal cells (MSCs) via CPB minimizes microglial activation and neuronal apoptosis, with subsequent improvement of cortical dysmaturation and behavioral alteration after neonatal cardiac surgery. Furthermore, transcriptomic analyses suggest that exosome-derived miRNAs may be the key drivers of suppressed apoptosis and STAT3-mediated microglial activation. Our findings demonstrate that MSC treatment during cardiac surgery has significant translational potential for improving cortical dysmaturation and neurological impairment in children with CHD.
RESUMEN
Apoptosis, classically initiated by caspase pathway activation, plays a prominent role during normal brain development as well as in neurodegeneration. The noncanonical, nonlethal arm of the caspase pathway is evolutionarily conserved and has also been implicated in both processes, yet is relatively understudied. Dysregulated pathway activation during critical periods of neurodevelopment due to environmental neurotoxins or exposure to compounds such as anesthetics can have detrimental consequences for brain maturation and long-term effects on behavior. In this review, we discuss key molecular characteristics and roles of the noncanonical caspase pathway and how its dysregulation may adversely affect brain development. We highlight both genetic and environmental factors that regulate apoptotic and sublethal caspase responses and discuss potential interventions that target the noncanonical caspase pathway for developmental brain injuries.
Asunto(s)
Anestesia , Caspasas , Apoptosis/genética , Encéfalo/metabolismo , Caspasa 3/metabolismo , Caspasas/genética , Caspasas/metabolismo , Humanos , NeurogénesisRESUMEN
Sonic Hedgehog (SHH) medulloblastomas are brain tumours that arise in the posterior fossa. Cancer-propagating cells (CPCs) provide a reservoir of cells capable of tumour regeneration and relapse post-treatment. Understanding and targeting the mechanisms by which CPCs are maintained and expanded in SHH medulloblastoma could present novel therapeutic opportunities. We identified the aryl hydrocarbon receptor (AHR) pathway as a potent tumour suppressor in a SHH medulloblastoma mouse model. Ahr-deficient tumours and CPCs grown in vitro, showed elevated activation of the TGFß mediator, SMAD3. Pharmacological inhibition of the TGFß/SMAD3 signalling axis was sufficient to inhibit the proliferation and promote the differentiation of Ahr-deficient CPCs. Human SHH medulloblastomas with high expression of the AHR repressor (AHRR) exhibited a significantly worse prognosis compared to AHRRlow tumours in two independent patient cohorts. Together, these findings suggest that reduced AHR pathway activity promotes SHH medulloblastoma progression, consistent with a tumour suppressive role for AHR. We propose that TGFß/SMAD3 inhibition may represent an actionable therapeutic approach for a subset of aggressive SHH medulloblastomas characterised by reduced AHR pathway activity.
Asunto(s)
Proteínas Hedgehog/metabolismo , Meduloblastoma/metabolismo , Meduloblastoma/patología , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Ratones , Fenotipo , FosforilaciónRESUMEN
Background Reduced oxygen delivery in congenital heart disease causes delayed brain maturation and white matter abnormalities in utero. No treatment currently exists. Tetrahydrobiopterin (BH4) is a cofactor for neuronal nitric oxide synthase. BH4 availability is reduced upon NOS activation, such as during hypoxic conditions, and leads to toxin production. We hypothesize that BH4 levels are depleted in the hypoxic brain and that BH4 replacement therapy mitigates the toxic effects of hypoxia on white matter. Methods and Results Transgenic mice were used to visualize oligodendrocytes. Hypoxia was introduced during a period of white matter development equivalent to the human third trimester. BH4 was administered during hypoxia. BH4 levels were depleted in the hypoxic brain by direct quantification (n=7-12). The proliferation (n=3-6), apoptosis (n=3-6), and developmental stage (n=5-8) of oligodendrocytes were determined immunohistologically. Total oligodendrocytes increased after hypoxia, consistent with hypoxia-induced proliferation seen previously; however, mature oligodendrocytes were less prevalent in hypoxia, and there was accumulation of immature oligodendrocytes. BH4 treatment improved the mature oligodendrocyte number such that it did not differ from normoxia, and accumulation of immature oligodendrocytes was not observed. These results persisted beyond the initial period of hypoxia (n=3-4). Apoptosis increased with hypoxia but decreased with BH4 treatment to normoxic levels. White matter myelin levels decreased following hypoxia by western blot. BH4 treatment normalized myelination (n=6-10). Hypoxia worsened sensory-motor coordination on balance beam tasks, and BH4 therapy normalized performance (n=5-9). Conclusions Suboptimal BH4 levels influence hypoxic white matter abnormalities. Repurposing BH4 for use during fetal brain development may limit white matter dysmaturation in congenital heart disease.
Asunto(s)
Biopterinas/análogos & derivados , Enfermedades Fetales/fisiopatología , Cardiopatías/congénito , Cardiopatías/fisiopatología , Hipoxia/fisiopatología , Sustancia Blanca/efectos de los fármacos , Sustancia Blanca/crecimiento & desarrollo , Animales , Biopterinas/farmacología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones TransgénicosRESUMEN
Neural stem/progenitor cells (NSCs) in the hippocampus produce new neurons throughout adult life. NSCs are maintained in a state of reversible quiescence and the failure to maintain the quiescent state can result in the premature depletion of the stem cell pool. The epigenetic mechanisms that maintain this quiescent state have not been identified. Using an inducible knockout mouse model, we show that the chromatin remodeling factor chromodomain-helicase-DNA-binding protein 7 (CHD7) is essential for maintaining NSC quiescence. CHD7 inactivation in adult NSCs results in a loss of stem cell quiescence in the hippocampus, a transient increase in cell divisions, followed by a significant decline in neurogenesis. This loss of NSC quiescence is associated with the premature loss of NSCs in middle-aged mice. We find that CHD7 represses the transcription of several positive regulators of cell cycle progression and is required for full induction of the Notch target gene Hes5 in quiescent NSCs. These findings directly link CHD7 to pathways involved in NSC quiescence and identify the first chromatin-remodeling factor with a role in NSC quiescence and maintenance. As CHD7 haplo-insufficiency is associated with a range of cognitive disabilities in CHARGE syndrome, our observations may have implications for understanding the basis of these deficits.