Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
JAMA Psychiatry ; 81(4): 386-395, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38198165

RESUMEN

Importance: Biological psychiatry aims to understand mental disorders in terms of altered neurobiological pathways. However, for one of the most prevalent and disabling mental disorders, major depressive disorder (MDD), no informative biomarkers have been identified. Objective: To evaluate whether machine learning (ML) can identify a multivariate biomarker for MDD. Design, Setting, and Participants: This study used data from the Marburg-Münster Affective Disorders Cohort Study, a case-control clinical neuroimaging study. Patients with acute or lifetime MDD and healthy controls aged 18 to 65 years were recruited from primary care and the general population in Münster and Marburg, Germany, from September 11, 2014, to September 26, 2018. The Münster Neuroimaging Cohort (MNC) was used as an independent partial replication sample. Data were analyzed from April 2022 to June 2023. Exposure: Patients with MDD and healthy controls. Main Outcome and Measure: Diagnostic classification accuracy was quantified on an individual level using an extensive ML-based multivariate approach across a comprehensive range of neuroimaging modalities, including structural and functional magnetic resonance imaging and diffusion tensor imaging as well as a polygenic risk score for depression. Results: Of 1801 included participants, 1162 (64.5%) were female, and the mean (SD) age was 36.1 (13.1) years. There were a total of 856 patients with MDD (47.5%) and 945 healthy controls (52.5%). The MNC replication sample included 1198 individuals (362 with MDD [30.1%] and 836 healthy controls [69.9%]). Training and testing a total of 4 million ML models, mean (SD) accuracies for diagnostic classification ranged between 48.1% (3.6%) and 62.0% (4.8%). Integrating neuroimaging modalities and stratifying individuals based on age, sex, treatment, or remission status does not enhance model performance. Findings were replicated within study sites and also observed in structural magnetic resonance imaging within MNC. Under simulated conditions of perfect reliability, performance did not significantly improve. Analyzing model errors suggests that symptom severity could be a potential focus for identifying MDD subgroups. Conclusion and Relevance: Despite the improved predictive capability of multivariate compared with univariate neuroimaging markers, no informative individual-level MDD biomarker-even under extensive ML optimization in a large sample of diagnosed patients-could be identified.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Femenino , Masculino , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/patología , Imagen de Difusión Tensora , Estudios de Cohortes , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética , Biomarcadores
2.
PNAS Nexus ; 2(2): pgad032, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36874281

RESUMEN

Electroconvulsive Therapy (ECT) is arguably the most effective intervention for treatment-resistant depression. While large interindividual variability exists, a theory capable of explaining individual response to ECT remains elusive. To address this, we posit a quantitative, mechanistic framework of ECT response based on Network Control Theory (NCT). Then, we empirically test our approach and employ it to predict ECT treatment response. To this end, we derive a formal association between Postictal Suppression Index (PSI)-an ECT seizure quality index-and whole-brain modal and average controllability, NCT metrics based on white-matter brain network architecture, respectively. Exploiting the known association of ECT response and PSI, we then hypothesized an association between our controllability metrics and ECT response mediated by PSI. We formally tested this conjecture in N = 50 depressive patients undergoing ECT. We show that whole-brain controllability metrics based on pre-ECT structural connectome data predict ECT response in accordance with our hypotheses. In addition, we show the expected mediation effects via PSI. Importantly, our theoretically motivated metrics are at least on par with extensive machine learning models based on pre-ECT connectome data. In summary, we derived and tested a control-theoretic framework capable of predicting ECT response based on individual brain network architecture. It makes testable, quantitative predictions regarding individual therapeutic response, which are corroborated by strong empirical evidence. Our work might constitute a starting point for a comprehensive, quantitative theory of personalized ECT interventions rooted in control theory.

3.
Mol Psychiatry ; 28(3): 1057-1063, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36639510

RESUMEN

Many therapeutic interventions in psychiatry can be viewed as attempts to influence the brain's large-scale, dynamic network state transitions. Building on connectome-based graph analysis and control theory, Network Control Theory is emerging as a powerful tool to quantify network controllability-i.e., the influence of one brain region over others regarding dynamic network state transitions. If and how network controllability is related to mental health remains elusive. Here, from Diffusion Tensor Imaging data, we inferred structural connectivity and inferred calculated network controllability parameters to investigate their association with genetic and familial risk in patients diagnosed with major depressive disorder (MDD, n = 692) and healthy controls (n = 820). First, we establish that controllability measures differ between healthy controls and MDD patients while not varying with current symptom severity or remission status. Second, we show that controllability in MDD patients is associated with polygenic scores for MDD and psychiatric cross-disorder risk. Finally, we provide evidence that controllability varies with familial risk of MDD and bipolar disorder as well as with body mass index. In summary, we show that network controllability is related to genetic, individual, and familial risk in MDD patients. We discuss how these insights into individual variation of network controllability may inform mechanistic models of treatment response prediction and personalized intervention-design in mental health.


Asunto(s)
Conectoma , Trastorno Depresivo Mayor , Humanos , Imagen de Difusión Tensora , Predisposición Genética a la Enfermedad , Imagen por Resonancia Magnética/métodos , Encéfalo
4.
JAMA Psychiatry ; 79(9): 879-888, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35895072

RESUMEN

Importance: Identifying neurobiological differences between patients with major depressive disorder (MDD) and healthy individuals has been a mainstay of clinical neuroscience for decades. However, recent meta-analyses have raised concerns regarding the replicability and clinical relevance of brain alterations in depression. Objective: To quantify the upper bounds of univariate effect sizes, estimated predictive utility, and distributional dissimilarity of healthy individuals and those with depression across structural magnetic resonance imaging (MRI), diffusion-tensor imaging, and functional task-based as well as resting-state MRI, and to compare results with an MDD polygenic risk score (PRS) and environmental variables. Design, Setting, and Participants: This was a cross-sectional, case-control clinical neuroimaging study. Data were part of the Marburg-Münster Affective Disorders Cohort Study. Patients with depression and healthy controls were recruited from primary care and the general population in Münster and Marburg, Germany. Study recruitment was performed from September 11, 2014, to September 26, 2018. The sample comprised patients with acute and chronic MDD as well as healthy controls in the age range of 18 to 65 years. Data were analyzed from October 29, 2020, to April 7, 2022. Main Outcomes and Measures: Primary analyses included univariate partial effect size (η2), classification accuracy, and distributional overlapping coefficient for healthy individuals and those with depression across neuroimaging modalities, controlling for age, sex, and additional modality-specific confounding variables. Secondary analyses included patient subgroups for acute or chronic depressive status. Results: A total of 1809 individuals (861 patients [47.6%] and 948 controls [52.4%]) were included in the analysis (mean [SD] age, 35.6 [13.2] years; 1165 female patients [64.4%]). The upper bound of the effect sizes of the single univariate measures displaying the largest group difference ranged from partial η2 of 0.004 to 0.017, and distributions overlapped between 87% and 95%, with classification accuracies ranging between 54% and 56% across neuroimaging modalities. This pattern remained virtually unchanged when considering either only patients with acute or chronic depression. Differences were comparable with those found for PRS but substantially smaller than for environmental variables. Conclusions and Relevance: Results of this case-control study suggest that even for maximum univariate biological differences, deviations between patients with MDD and healthy controls were remarkably small, single-participant prediction was not possible, and similarity between study groups dominated. Biological psychiatry should facilitate meaningful outcome measures or predictive approaches to increase the potential for a personalization of the clinical practice.


Asunto(s)
Trastorno Depresivo Mayor , Adolescente , Adulto , Anciano , Biomarcadores , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Estudios de Casos y Controles , Estudios de Cohortes , Estudios Transversales , Depresión , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/fisiopatología , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Neuroimagen/métodos , Adulto Joven
5.
Sci Adv ; 8(1): eabg9471, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34985964

RESUMEN

The deviation between chronological age and age predicted from neuroimaging data has been identified as a sensitive risk marker of cross-disorder brain changes, growing into a cornerstone of biological age research. However, machine learning models underlying the field do not consider uncertainty, thereby confounding results with training data density and variability. Also, existing models are commonly based on homogeneous training sets, often not independently validated, and cannot be shared because of data protection issues. Here, we introduce an uncertainty-aware, shareable, and transparent Monte Carlo dropout composite quantile regression (MCCQR) Neural Network trained on N = 10,691 datasets from the German National Cohort. The MCCQR model provides robust, distribution-free uncertainty quantification in high-dimensional neuroimaging data, achieving lower error rates compared with existing models. In two examples, we demonstrate that it prevents spurious associations and increases power to detect deviant brain aging. We make the pretrained model and code publicly available.

6.
eNeuro ; 9(1)2022.
Artículo en Inglés | MEDLINE | ID: mdl-34782347

RESUMEN

Seizure prediction is the grand challenge of epileptology. However, effort was devoted to prediction of focal seizures, while generalized seizures were regarded as stochastic events. Long-lasting local field potential (LFP) recordings containing several hundred generalized spike and wave discharges (SWDs), acquired at eight locations in the cortico-thalamic system of absence epileptic rats, were iteratively analyzed in all possible combinations of either two or three recording sites, by a wavelet-based algorithm, calculating the product of the wavelet-energy signaling increases in synchronicity. Sensitivity and false alarm rate of prediction were compared between various combinations, and wavelet spectra of true and false positive predictions were fed to a random forest machine learning algorithm to further differentiate between them. Wavelet analysis of intracortical and cortico-thalamic LFP traces showed a significantly smaller number of false alarms compared with intrathalamic combinations, while predictions based on recordings in Layers IV, V, and VI of the somatosensory-cortex significantly outreached all other combinations in terms of prediction sensitivity. In 24-h out-of-sample recordings of nine Genetic Absence Epilepsy Rats from Strasbourg (GAERS), containing diurnal fluctuations of SWD occurrence, classification of true and false positives by the trained random forest further reduced the false alarm rate by 71%, although at some trade-off between false alarms and sensitivity of prediction, as reflected in relatively low F1 score values. Results provide support for the cortical-focus theory of absence epilepsy and allow the conclusion that SWDs are predictable to some degree. The latter paves the way for the development of closed-loop SWD prediction-prevention systems. Suggestions for a possible translation to human data are outlined.


Asunto(s)
Epilepsia Tipo Ausencia , Animales , Modelos Animales de Enfermedad , Electroencefalografía/métodos , Epilepsia Tipo Ausencia/genética , Aprendizaje Automático , Ratas , Convulsiones
7.
PLoS One ; 16(7): e0254062, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34288935

RESUMEN

PHOTONAI is a high-level Python API designed to simplify and accelerate machine learning model development. It functions as a unifying framework allowing the user to easily access and combine algorithms from different toolboxes into custom algorithm sequences. It is especially designed to support the iterative model development process and automates the repetitive training, hyperparameter optimization and evaluation tasks. Importantly, the workflow ensures unbiased performance estimates while still allowing the user to fully customize the machine learning analysis. PHOTONAI extends existing solutions with a novel pipeline implementation supporting more complex data streams, feature combinations, and algorithm selection. Metrics and results can be conveniently visualized using the PHOTONAI Explorer and predictive models are shareable in a standardized format for further external validation or application. A growing add-on ecosystem allows researchers to offer data modality specific algorithms to the community and enhance machine learning in the areas of the life sciences. Its practical utility is demonstrated on an exemplary medical machine learning problem, achieving a state-of-the-art solution in few lines of code. Source code is publicly available on Github, while examples and documentation can be found at www.photon-ai.com.


Asunto(s)
Aprendizaje Automático , Programas Informáticos , Algoritmos , Conjuntos de Datos como Asunto , Redes Neurales de la Computación , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA