Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 19138, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36352016

RESUMEN

We report an ideal method for quantifying impurities in mycophenolate mofetil drug substances and their oral suspension preparations. We developed a systematic and eco-friendly analytical approach utilizing quality by design (QbD) and green chemistry principles. Initially, the critical method parameters (CMPs) were screened using a D-optimal design. The robust final method conditions were optimized using a systematic central composite design (CCD). Through graphical and numerical optimization, the protocol conditions were augmented. The pH of mobile phase buffer (25 mM KH2PO4) (MP-A), initial gradient composition (% MP-A), flow rate (mL min-1), and column oven temperatures (°C) are 4.05, 87, 0.4, and 30, respectively. The best possible separation between the critical pairs was achieved while using the Waters Acquity UPLC BEH C18 (100 × 2.1) mm, 1.7 µm analytical column. A mixture of water and acetonitrile in the ratio of 30:70 (v/v) was used as mobile phase-B for the gradient elution. The analytical method was validated in agreement with ICH and USP guidelines. The specificity results revealed that no peaks interfered with the impurities and MPM. The mean recovery of the impurities ranged between 96.2 and 102.7%, and the linearity results r > 0.999 across the range of LOQ - 150%. The precision results (%RSD) ranged between 0.8 and 4.5%. The degradation products formed during the base-induced degradation were identified as isomers of mycophenolic acid and sorbitol esters using Q-ToF LC-MS and their molecular and fragment ion peaks. The developed method eco-friendliness and greenness were assessed using analytical greenness (AGREE), green analytical procedure index (GAPI), and analytical eco score, and found it is green.


Asunto(s)
Contaminación de Medicamentos , Ácido Micofenólico , Cromatografía Líquida de Alta Presión/métodos , Contaminación de Medicamentos/prevención & control , Límite de Detección , Reproducibilidad de los Resultados
2.
J Chromatogr A ; 1679: 463380, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35970050

RESUMEN

An anti-inflammatory skin condition is treated with fluocinolone acetonide (FLA), a synthetic corticoid. The current study aims to develop a stability-indicating UPLC method for the determination of impurities present in fluocinolone acetonide and its topical oil formulation. The method development was performed by implementing Analytical Quality by Design (AQbD) and green chemistry principles. A detailed risk assessment was conducted based on the cause-and-effect relationship. d-optimal split-plot design was employed to screen the critical method parameters (CMPs). The central composite design (CCD) was employed to optimize the final method conditions. p-values for the model and lack of fit were <0.0001 and >0.05, respectively, which indicates the best fit statistical model for the studied responses (peak resolutions R1 - R5). The critical method attributes (CMAs) and CMPs such as the ratio of ACN: Water in mobile phase-B as 600:400 (v/v), the ratio of mobile phase-A & B in initial gradient program as 60:40, flow rate as 0.3 mL min-1, and column oven temperature as 50 °C were optimized from the CCD. The best possible separation among all components was achieved with a gradient elution using Waters Acquity UPLC HSS C18, 100 mm × 2.1 mm, 1.8 µm analytical column. The optimized gradient program is time (min)/%B: 0.0/40, 1.5/40, 6.0/60, 8.0/70, 9.0/80, 12.0/100, 15.0/100, 15.1/40 & 18.0/40. Optimization of diluent is highly critical for any oil-based formulations. The experimental results show that acetonitrile is the most suitable diluent for the current study. The method validation was executed in compliance with ICH and USP 〈1225〉 guidelines. Mean recovery of the impurities ranged between 95.7 and 105.7%, the correlation coefficient(r) was> 0.999, the RSD values (n = 6) ranged between 0.9 - 3.2% across the range for LOQ - 150% levels. The peaks from the specificity study did not interfere with the known and active analyte peaks. The major degradation products were identified as Imp-C, B, and A, and established their degradation pathways from FLA based on the stress studies. The method greenness was evaluated using GAPI, AGREE and analytical eco scale and found that the method is green.


Asunto(s)
Excipientes , Fluocinolona Acetonida , Cromatografía Líquida de Alta Presión , Reproducibilidad de los Resultados , Proyectos de Investigación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...