Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
G3 (Bethesda) ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839053

RESUMEN

Many proteins undergo a post-translational lipid attachment, which increases their hydrophobicity, thus strengthening their membrane association properties or aiding in protein interactions. Geranylgeranyltransferase-I (GGTase-I) is an enzyme involved in a three-step post-translational modification (PTM) pathway that attaches a 20-carbon lipid group called geranylgeranyl at the carboxy-terminal cysteine of proteins ending in a canonical CaaL motif (C - cysteine, a - aliphatic, L - often leucine, but can be phenylalanine, isoleucine, methionine, or valine). Genetic approaches involving two distinct reporters were employed in this study to assess S. cerevisiae GGTase-I specificity, for which limited data exists, towards all 8000 CXXX combinations. Orthogonal biochemical analyses and structure-based alignments were also performed to better understand the features required for optimal target interaction. These approaches indicate that yeast GGTase-I best modifies the Cxa[L/F/I/M/V] sequence that resembles but is not an exact match for the canonical CaaL motif. We also observed that minor modification of non-canonical sequences is possible. A consistent feature associated with well-modified sequences was the presence of a non-polar a2 residue and a hydrophobic terminal residue, which are features recognized by mammalian GGTase-I. These results thus support that mammalian and yeast GGTase-I exhibit considerable shared specificity.

2.
Dis Model Mech ; 17(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38818856

RESUMEN

Prenylated proteins are prevalent in eukaryotic biology (∼1-2% of proteins) and are associated with human disease, including cancer, premature aging and infections. Prenylated proteins with a C-terminal CaaX sequence are targeted by CaaX-type prenyltransferases and proteases. To aid investigations of these enzymes and their targets, we developed Saccharomyces cerevisiae strains that express these human enzymes instead of their yeast counterparts. These strains were developed in part to explore human prenyltransferase specificity because of findings that yeast FTase has expanded specificity for sequences deviating from the CaaX consensus (i.e. atypical sequence and length). The humanized yeast strains displayed robust prenyltransferase activity against CaaX sequences derived from human and pathogen proteins containing typical and atypical CaaX sequences. The system also recapitulated prenylation of heterologously expressed human proteins (i.e. HRas and DNAJA2). These results reveal that substrate specificity is conserved for yeast and human farnesyltransferases but is less conserved for type I geranylgeranyltransferases. These yeast systems can be easily adapted for investigating the prenylomes of other organisms and are valuable new tools for helping define the human prenylome, which includes physiologically important proteins for which the CaaX modification status is unknown.


Asunto(s)
Prenilación de Proteína , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Secuencia de Aminoácidos , Dimetilaliltranstransferasa/metabolismo , Proteínas Virales/metabolismo , Transferasas Alquil y Aril/metabolismo
3.
bioRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38496651

RESUMEN

Many proteins undergo a post-translational lipid attachment, which increases their hydrophobicity, thus strengthening their membrane association properties or aiding in protein interactions. Geranylgeranyltransferase-I (GGTase-I) is an enzyme involved in a three-step post-translational modification (PTM) pathway that attaches a 20-carbon lipid group called geranylgeranyl at the carboxy-terminal cysteine of proteins ending in a canonical CaaL motif (C - cysteine, a - aliphatic, L - often leucine, but can be phenylalanine, isoleucine, methionine, or valine). Genetic approaches involving two distinct reporters were employed in this study to assess S. cerevisiae GGTase-I specificity, for which limited data exists, towards all 8000 CXXX combinations. Orthogonal biochemical analyses and structure-based alignments were also performed to better understand the features required for optimal target interaction. These approaches indicate that yeast GGTase-I best modifies the Cxa[L/F/I/M/V] sequence that resembles but is not an exact match for the canonical CaaL motif. We also observed that minor modification of non-canonical sequences is possible. A consistent feature associated with well-modified sequences was the presence of a non-polar a2 residue and a hydrophobic terminal residue, which are features recognized by mammalian GGTase-I. These results thus support that mammalian and yeast GGTase-I exhibit considerable shared specificity.

4.
bioRxiv ; 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37786692

RESUMEN

The C-terminal CaaX sequence (cysteine-aliphatic-aliphatic-any of several amino acids) is subject to isoprenylation on the conserved cysteine and is estimated to occur in 1-2% of proteins within yeast and human proteomes. Recently, non-canonical CaaX sequences in addition to shorter and longer length CaX and CaaaX sequences have been identified that can be prenylated. Much of the characterization of prenyltransferases has relied on the yeast system because of its genetic tractability and availability of reporter proteins, such as the a-factor mating pheromone, Ras GTPase, and Ydj1 Hsp40 chaperone. To compare the properties of yeast and human prenyltransferases, including the recently expanded target specificity of yeast farnesyltransferase, we have developed yeast strains that express human farnesyltransferase or geranylgeranyltransferase-I in lieu of their yeast counterparts. The humanized yeast strains display robust prenyltransferase activity that functionally replaces yeast prenyltransferase activity in a wide array of tests, including the prenylation of a wide variety of canonical and non-canonical human CaaX sequences, virus encoded CaaX sequences, non-canonical length sequences, and heterologously expressed human proteins HRas and DNAJA2. These results reveal highly overlapping substrate specificity for yeast and human farnesyltransferase, and mostly overlapping substrate specificity for GGTase-I. This yeast system is a valuable tool for further defining the prenylome of humans and other organisms, identifying proteins for which prenylation status has not yet been determined.

5.
G3 (Bethesda) ; 13(7)2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37119806

RESUMEN

The current understanding of farnesyltransferase (FTase) specificity was pioneered through investigations of reporters like Ras and Ras-related proteins that possess a C-terminal CaaX motif that consists of 4 amino acid residues: cysteine-aliphatic1-aliphatic2-variable (X). These studies led to the finding that proteins with the CaaX motif are subject to a 3-step post-translational modification pathway involving farnesylation, proteolysis, and carboxylmethylation. Emerging evidence indicates, however, that FTase can farnesylate sequences outside the CaaX motif and that these sequences do not undergo the canonical 3-step pathway. In this work, we report a comprehensive evaluation of all possible CXXX sequences as FTase targets using the reporter Ydj1, an Hsp40 chaperone that only requires farnesylation for its activity. Our genetic and high-throughput sequencing approach reveals an unprecedented profile of sequences that yeast FTase can recognize in vivo, which effectively expands the potential target space of FTase within the yeast proteome. We also document that yeast FTase specificity is majorly influenced by restrictive amino acids at a2 and X positions as opposed to the resemblance of CaaX motif as previously regarded. This first complete evaluation of CXXX space expands the complexity of protein isoprenylation and marks a key step forward in understanding the potential scope of targets for this isoprenylation pathway.


Asunto(s)
Transferasas Alquil y Aril , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Farnesiltransferasa/genética , Farnesiltransferasa/metabolismo , Secuencia de Aminoácidos , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Prenilación de Proteína , Proteínas/genética , Especificidad por Sustrato
6.
J Raman Spectrosc ; 54(1): 124-132, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36713977

RESUMEN

The world is on the brink of facing coronavirus's (COVID-19) fourth wave as the mutant forms of viruses are escaping neutralizing antibodies in spite of being vaccinated. As we have already witnessed that it has encumbered our health system, with hospitals swamped with infected patients observed during the viral outbreak. Rapid triage of patients infected with SARS-CoV-2 is required during hospitalization to prioritize and provide the best point of care. Traditional diagnostics techniques such as RT-PCR and clinical parameters such as symptoms, comorbidities, sex and age are not enough to identify the severity of patients. Here, we investigated the potential of confocal Raman microspectroscopy as a powerful tool to generate an expeditious blood-based test for the classification of COVID-19 disease severity using 65 patients plasma samples from cohorts infected with SARS-CoV-2. We designed an easy manageable blood test where we used a small volume (8 µl) of inactivated whole plasma samples from infected patients without any extra solvent usage in plasma processing. Raman spectra of plasma samples were acquired and multivariate exploratory analysis PC-LDA (principal component based linear discriminant analysis) was used to build a model, which segregated the severe from the non-severe COVID-19 group with a sensitivity of 83.87%, specificity of 70.60% and classification efficiency of 76.92%. Among the bands expressed in both the cohorts, the study led to the identification of Raman fingerprint regions corresponding to lipids (1661, 1742), proteins amide I and amide III (1555, 1247), proteins (Phe) (1006, 1034), and nucleic acids (760) to be differentially expressed in severe COVID-19 patient's samples. In summary, the current study exhibits the potential of confocal Raman to generate simple, rapid, and less expensive blood tests to triage the severity of patients infected with SARS-CoV-2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...