Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 11698, 2022 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-35810170

RESUMEN

In this study,the water samples were collected from 31 sites of Tawang, Arunachal Pradesh, India (North-Eastern Himalaya), during the winter season to check the suitability of water for drinking and irrigation purposes.The study scientifically demonstrates the estimation of Water quality index (WQI) andhydrogeochemical characteristics of surface water samples by utilizing multivariate statistical methods. The main water quality parameters considered for this study were TDS, conductivity, salinity, pH, hardness, cations and anions. WQI was calculated in order to find out the deviation in the water quality parameters particularly with respect to BIS permissible limits.The major influencing factors responsible for the variation in these parameters were derived by using Principal component analysis (PCA) and Correlation matrix.To check the suitability of water for drinking purpose, hydrogeochemical facies and rock water interaction was derived by using well established methods such as Piper Plot (determine water type), WQI (Quality monitoring), and saturation index (for mineral dissolution). The results revealed that the silicate weathering was the main ionic source in comparison to carbonate weathering which is due to the higher dissolution capacity of silicate minerals.The results of the scattered plot between (Ca2+ + Mg2+)-(HCO3- + SO42-) versus (Na+ + K+)-Cl- (meq/L) highlighted thation exchange occurs between Mg2+ and Ca2+ofsurface water with Na+ and K+of rock /soil. This means that calcium ion was getting adsorbed, and sodium ion was getting released. The Ca2+-Mg2+-HCO3-, Na+-HCO3-and Na+-Cl- type of surface water suggested permanent and temporary hardness respectively in the studied region. The dominant cations of this study were Na+ and Ca2+ while the dominant anions were HCO3- and SO42-. In order to check the suitability of water sources for irrigation, parameters like, Magnesium hazard (MH), Total hardness (TH), Permeability Index (PI), Kelly Index (KI), Sodium adsorption rate (SAR), Sodium percentage (Na%), and Residual sodium carbonate (RSC) were determined. The results showed that 93% of the samples had PI score < 75, which indicates the suitability of the water for irrigation. Also the WQI calculation showed an average WQI value of 82.49, amongst which 61% samples were in the range of 0-50 being considered as good for drinking, while 39% were catageorised as unsuitable for drinking showing a value of > 50. Hence the above findings reveal that geogenic activities play a major role in influencing the water quality of Tawang region. Hence suitable water treatment technologies or methods might be used to eliminate thenon desirable elements and minerals present in surface water.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Cationes/análisis , Monitoreo del Ambiente/métodos , Agua Subterránea/análisis , India , Minerales/análisis , Sodio/análisis , Contaminantes Químicos del Agua/análisis , Calidad del Agua
2.
Chemosphere ; 299: 134369, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35318018

RESUMEN

The presence of arsenic in the groundwater of the densely-populated Bengal Basin evolved as a mass-poisoning agent and is a reason for the misery of millions of people living here. High-level arsenic was detected in the shallow aquifer-tube wells of the basin in the late-20th century. The redox conditions and the biogeochemical activities in the shallow aquifers support the existence of arsenic in its most toxic +3 state. The shallow aquifers are constructed by the Holocene reduced grey sands, having a lesser capacity to hold the arsenic brought from the Himalayas by the Ganga-Brahmaputra-Meghna river system. Among several other hypotheses, the reductive dissolution of arsenic bearing Fe-oxyhydroxides coupled with the microbial activities in the organic-matter-rich Holocene grey sands is believed to be the primary reason for releasing arsenic in groundwater of basinal shallow aquifers. The deep aquifers below the late Pleistocene aquifers and the Palaeo-interfluvial aquifers capped by the last glacial maximum Palaeosol generally contain arsenic-free or low-arsenic water. Ingress of arsenic into the deep aquifers from the shallow aquifers was considered to have been caused by extensive non-domestic pumping. However, studies have found that extensive pumping is unlikely to contaminate the deep aquifer water with higher levels of arsenic within decadal time scales. Irrigation-pumping may produce hydraulic barriers between the shallow and deep aquifer-groundwater and distributes arsenic in the topsoil by flushing. Significant disparities have been observed among the Bengal basinal groundwater arsenic concentrations. However, abrupt spatial variation in groundwater arsenic concentrations has been a key feature of the basin.


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Arsénico/análisis , Monitoreo del Ambiente , Humanos , Arena , Agua , Contaminantes Químicos del Agua/análisis
3.
Genome Biol ; 22(1): 78, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33685491

RESUMEN

Spatial transcriptomic and proteomic technologies have provided new opportunities to investigate cells in their native microenvironment. Here we present Giotto, a comprehensive and open-source toolbox for spatial data analysis and visualization. The analysis module provides end-to-end analysis by implementing a wide range of algorithms for characterizing tissue composition, spatial expression patterns, and cellular interactions. Furthermore, single-cell RNAseq data can be integrated for spatial cell-type enrichment analysis. The visualization module allows users to interactively visualize analysis outputs and imaging features. To demonstrate its general applicability, we apply Giotto to a wide range of datasets encompassing diverse technologies and platforms.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Hibridación in Situ , Programas Informáticos , Análisis de Datos , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica/métodos , Hibridación in Situ/métodos , Especificidad de Órganos/genética , Análisis Espacial , Transcriptoma
4.
Nanoscale Adv ; 3(20): 5722-5744, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36132675

RESUMEN

Carbon nanotubes (CNTs) are considered as one of the ideal materials due to their high surface area, high aspect ratio, and impressive material properties, such as mechanical strength, and thermal and electrical conductivity, for the manufacture of next generation composite materials. In spite of the mentioned attractive features, they tend to agglomerate due to their inherent chemical structure which limits their application. Surface modification is required to overcome the agglomeration and increase their dispersability leading to enhanced interactions of the functionalized CNTs with matrix materials/polymer matrices. Recent developments concerning reliable methods for the functionalization of carbon nanotubes offer an additional thrust towards extending their application areas. By chemical functionalization, organic functional groups are generated/attached to the surfaces as well as the tip of CNTs which opens up the possibilities for tailoring the properties of nanotubes and extending their application areas. Different research efforts have been devoted towards both covalent and non-covalent functionalization for different applications. Functionalized CNTs have been used successfully for the development of high quality nanocomposites, finding wide application as chemical and biological sensors, in optoelectronics and catalysis. Non covalently functionalized carbon nanotubes have been used as a substrate for the immobilization of a large variety of biomolecules to impart specific recognition properties for the development of miniaturized biosensors as well as designing of novel bioactive nanomaterials. Functionalized CNTs have also been demonstrated as one of the promising nanomaterials for the decontamination of water due to their high adsorption capacity and specificity for various contaminants. Specifically modified CNTs have been utilized for bone tissue engineering and as a novel and versatile drug delivery vehicle. This review article discusses in short the synthesis, properties and applications of CNTs. This includes the need for functionalization of CNTs, methods and types of functionalization, and properties of functionalized CNTs and their applications especially with respect to material and biomedical sciences, water purification, and drug delivery systems.

5.
Chemosphere ; 242: 125234, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31896174

RESUMEN

In this study, the performance of zirconia-multiwalled carbon-nanotube nanoheterostructure in adsorbing the highly toxic water-contaminant As(III) from water has been probed from the perspective of physical chemistry and chemical physics. The adsorbent found extremely efficient in adsorbing As(III) from potable water. Moreover, its ability to oxidize As(III) to As(V) in the aqueous solution has been evinced by the XPS studies. The values of the maximum adsorption capacities (qm) depend on the isotherm studied and in this study, no wonder different values of qm are obtained for different adsorption isotherms. The thermodynamic studies advocate the exothermic and spontaneous nature of the adsorption process. Calculation on density functional theory (DFT) also suggested the exothermic nature of the adsorption process. DFT calculation further revealed the role of the Zr-O and Zr-OH bridges in binding As(III) species on the zirconia surface. However, this study finds an adverse effect of visible light-irradiation on the adsorption process. Furthermore, this study propounds an approach to estimate the maximum solubility of As(III) in water combining the Cerofolini's condensation-approximation and Polanyi adsorption potential. Detailed analysis on the approximate adsorption site energy distribution (f(E*)) further finds an inconsistency in the formula used to estimate qm using f(E*), which underestimates qm. The inconsistency, for the very first time, has successfully been resolved by modifying the heterogeneity related parameter in f(E*).


Asunto(s)
Arsénico/química , Nanotubos de Carbono/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Adsorción , Química Física , Agua Potable , Concentración de Iones de Hidrógeno , Cinética , Oxidación-Reducción , Física , Solubilidad , Termodinámica , Agua/química , Circonio
6.
IEEE J Biomed Health Inform ; 23(4): 1631-1638, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30295633

RESUMEN

This study explored the feasibility of automated characterization of functional mobility via an Instrumented Cane System (ICS) within an older adult sample of cane users. An off-the-shelf offset cane was instrumented with inertial, force, and ultrasound sensors for noninvasive data collection. Eighteen patients from a neurological out-patient rehabilitation clinic and nine independently mobile controls participated in standard clinical evaluations of mobility using the ICS while under the care of an attending physical therapist. Feasibility of the ICS was gauged through two studies. The first demonstrated the capability of the ICS to reliably collect meaningful usage metrics, and the second provided preliminary support for the discriminability of high and low falls risk from system-reported metrics. Specifically, the cane significantly differentiated patients and controls (p < 0.05), and a measure of the variation in rotational velocity was associated with total scores on the Functional Gait Assessment (partial r = 0.61, p < 0.01). These findings may ultimately serve to complement and even extend current clinical assessment practices.


Asunto(s)
Bastones , Análisis de la Marcha , Monitoreo Ambulatorio , Procesamiento de Señales Asistido por Computador , Acelerometría/instrumentación , Accidentes por Caídas/prevención & control , Anciano , Anciano de 80 o más Años , Diseño de Equipo , Estudios de Factibilidad , Femenino , Análisis de la Marcha/instrumentación , Análisis de la Marcha/métodos , Fuerza de la Mano/fisiología , Humanos , Masculino , Persona de Mediana Edad , Monitoreo Ambulatorio/instrumentación , Monitoreo Ambulatorio/métodos , Presión
8.
Chemosphere ; 158: 37-49, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27239969

RESUMEN

Arsenic is a ubiquitous element found in the earth crust with a varying concentration in the earth soil and water. Arsenic has always been under the scanner due to its toxicity in human beings. Contamination of arsenic in drinking water, which generally finds its source from arsenic-containing aquifers; has severely threatened billions of people all over the world. Arsenic poisoning is worse in Bangladesh where As(III) is abundant in waters of tube wells. Natural occurrence of arsenic in groundwater could result from both, oxidative and reductive dissolution. Geothermally heated water has the potential to liberate arsenic from surrounding rocks. Inorganic arsenic has been found to have more toxicity than the organic forms of arsenic. MMA and DMA are now been considered as the organic arsenic compounds having the potential to impair DNA and that is why MMA and DMA are considered as carcinogens. Endless efforts of researchers have elucidated the source, behavior of arsenic in various parts of the environment, mechanism of toxicity and various remediation processes; although, there are lots of areas still to be addressed. In this article, attempts have been made to lay bare an overview of geochemistry, toxicity and current removal techniques of arsenic together.


Asunto(s)
Intoxicación por Arsénico , Arsénico/análisis , Arsénico/toxicidad , Agua Subterránea/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Adsorción , Aire , Arsenicales/análisis , Bangladesh , Geografía , Humanos , Concentración de Iones de Hidrógeno , Iones , Membranas Artificiales , Modelos Teóricos , Oxidación-Reducción , Contaminantes del Suelo/análisis , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...