Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Environ Geochem Health ; 46(8): 298, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980518

RESUMEN

Grass carp intestinal waste-mediated biosynthesized nanosilver (AgNPs) was valorized using guaran and zeolite matrices, resulting in AgNPs-guaran, AgNPs-zeolite, and AgNPs-guaran -zeolite composites. The valorized products were examined using Environmental Scanning Electron Microscopy, Energy Dispersive X-ray analysis and X-ray Diffraction analysis to confirm uniform dispersion and entrapment of AgNPs within the matrixes. These valorized products were evaluated for their efficacy in detoxifying the ubiquitous and toxic hexavalent chromium (Cr6+) in aquatic environments, with Anabas testudineus exposed to 2 mg l-1 of Cr6+ for 60 days. Remarkable reduction of Cr6+ concentration to 0.86 ± 0.007 mg l-1 was achieved with AgNPs-guaran-zeolite composite, indicating successful reclamation of contaminated water and food safety assurance. Consistency in results was further corroborated by minimal stress-related alterations in fish physiological parameters and integrated biomarker response within the experimental group treated with the AgNPs-guaran-zeolite composite. Despite observed chromium accumulation in fish tissues, evidence of physiological stability was apparent, potentially attributable to trivalent chromium accumulation, serving as an essential nutrient for the fish. Additionally, the challenge study involving Anabas testudineus exposed to Aeromonas hydrophila exhibited the lowest cumulative mortality (11.11%) and highest survival rate (87.5%) within the same experimental group. The current study presents a novel approach encompassing the valorization of AgNPs for Cr6+ detoxification under neutral to alkaline pH conditions, offering a comprehensive framework for environmental remediation.


Asunto(s)
Biomarcadores , Cromo , Nanopartículas del Metal , Plata , Contaminantes Químicos del Agua , Zeolitas , Animales , Cromo/química , Zeolitas/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Plata/química , Plata/toxicidad , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Hidrogeles/química , Bioacumulación , Inactivación Metabólica , Galactanos , Mananos , Gomas de Plantas
2.
Biofabrication ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981495

RESUMEN

One ever-evolving and ever-demanding critical human endeavour is the provision of food security for the growing world population. It could be done by adopting sustainable agriculture through horizontal (expanding the aerable land area) and vertical (intensifying agriculture through sound technological approaches) interventions. Customised formulated nanomaterials have numerous advantages. With their specialised physicochemical properties, some nanoparticulised materials improve plant's natural development and stress tolerance and some other are good nanocarriers. Nanocarriers in agriculture often coat chemicals to form composites having utilities with crop productivity enhancement abilities, environmental management (like ecotoxicity reduction ability), and biomedicines (like the ability of controlled and targeted release of useful nanoscale drugs). The Ag, Fe, Zn, TiO2, ZnO, SiO2 and MgO nanoparticles often employed in advanced agriculture are covered here. Some nanoparticles used for various extended purposes in modern farming practices, including disease diagnostics and seed treatment are covered too. Thus, nanotechnology has revolutionised agrotechnology, which holds promises to transform agricultural (eco)system as a whole to ensure food security in future. Considering the available literature, the article further probes the emergent regulatory issues governing the synthesis and use of nanomaterials in the agriculture sector. If applied responsibly, nanomaterials could help improve soil health. The article provides an overview of the used nanomaterials in distribution of biomolecules, to aid in devising a safer and eco-friendly sustainable agriculture strategy. Through this, agri-systems depending on advanced farming practices might function more effectively and enhance agri-productivity to meet the food demand of the rising world population.

3.
Physiol Mol Biol Plants ; 30(5): 839-850, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38846459

RESUMEN

Faba bean (Vicia faba L.) is a winter season grain legume and a rich source of the anti-parkinson drug, L-3,4-dihydroxyphenylalanine (L-DOPA). The biosynthesis of L-DOPA in plants is not uniform and remains largely unexplored. While the hydroxylase activities of Tyrosine Hydroxylase (TH), the Cytochrome P450 (CYP450) class of enzymes, and Polyphenol Oxidases (PPOs) on tyrosine substrate have been reported in plants, only the roles of PPOs in L-DOPA biosynthesis have been recently established in velvet bean (Mucuna pruriens). To understand the differential accumulation of L-DOPA in different tissues of faba bean, profiling of L-Tyrosine, L-DOPA, Tyramine, and Dopamine in different tissues was performed. Differential accumulation of L-DOPA depended on tissue type and maturity. Furthermore, dopamine biosynthesis through L-DOPA from L-Tyr was confirmed in faba bean. The expression analysis of PPOs in leaf and flower tissues revealed the selective induction of only four (HePPO-2, HePPO-7, HePPO-8b, and HePPO-10) out of ten genes encoding different PPOs mined from the faba bean genome. Higher accumulation of L-DOPA in young leaves and flower buds than in mature leaves and flowers was accompanied by significantly higher expression of HePPO-10 and HePPO-7, respectively. The role of various transcription factors contributing to such metabolite dynamics was also predicted. Further exploration of this mechanism using a multi-omics approach can provide meaningful insight and pave the way for enhancing L-DOPA content in crops. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01449-2.

4.
Nature ; 631(8019): 67-72, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38839970

RESUMEN

Since the demonstration of p-type gallium nitride (GaN) through doping with substitutional magnesium (Mg) atoms1,2, rapid and comprehensive developments, such as blue light-emitting diodes, have considerably shaped our modern lives and contributed to a more carbon-neutral society3-5. However, the details of the interplay between GaN and Mg have remained largely unknown6-11. Here we observe that Mg-intercalated GaN superlattices can form spontaneously by annealing a metallic Mg film on GaN at atmospheric pressure. To our knowledge, this marks the first instance of a two-dimensional metal intercalated into a bulk semiconductor, with each Mg monolayer being intricately inserted between several monolayers of hexagonal GaN. Characterized as an interstitial intercalation, this process induces substantial uniaxial compressive strain perpendicular to the interstitial layers. Consequently, the GaN layers in the Mg-intercalated GaN superlattices exhibit an exceptional elastic strain exceeding -10% (equivalent to a stress of more than 20 GPa), among the highest recorded for thin-film materials12. The strain alters the electronic band structure and greatly enhances hole transport along the compression direction. Furthermore, the Mg sheets induce a unique periodic transition in GaN polarity, generating polarization-field-induced net charges. These characteristics offer fresh insights into semiconductor doping and conductivity enhancement, as well as into elastic strain engineering of nanomaterials and metal-semiconductor superlattices13.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38795292

RESUMEN

The decay of rivers and river water pollution are common problems worldwide. However, many works have been performed on decaying rivers in India, and the status of the water quality is still unknown in Jalangi River. To this end, the present study intends to examine the water quality of the Jalangi River to assess ecological status in both the spatial and seasonal dimensions. To depict the spatiality of ecological risks, 34 water samples were collected from the source to the sink of the Jalangi River with an interval of 10 km while 119 water samples were collected from a secondary source during 2012-2022 to capture the seasonal dynamics. In this work, the seasonality and spatiality of change in the river's water quality have been explored. This study used the eutrophication index (EI), organic pollution index (OPI), and overall index of pollution (OIP) to assess the ecological risk. The results illustrated that the values of OPI range from 7.17 to 588, and the values of EI exceed the standard of 1, indicating the critical situation of the ecological status of Jalangi River. The value of OIP ranges between 2.67 and 3.91 revealing the slightly polluted condition of the river water. The study signified the ecological status of the river is in a critical situation due to elevated concentrations of biological oxygen demand, chemical oxygen demand, and low concentrations of dissolved oxygen. The present study found that stagnation of water flow in the river, primarily driven by the eastward tilting of the Bengal basin, triggered water pollution and ecological risk. Moreover, anthropogenic interventions in the form of riverbed agriculture and the discharge of untreated sewage from urban areas are playing a crucial role in deteriorating the water quality of the river. This decay needs substantial attention from the various stakeholders in a participatory manner.

6.
Br J Radiol ; 97(1158): 1153-1161, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38637944

RESUMEN

OBJECTIVES: The aim of this study was to determine the number of trade-off explored (TO) library plans required for building a RapidPlan (RP) library that would generate the optimal clinical treatment plan. METHODS: We developed 2 RP models, 1 each for the 2 clinical sites, head and neck (HN) and cervix. The models were created using 100 plans and were validated using 70 plans (VP) for each site respectively. Each of the 2 libraries comprising 100 TO plans was divided into 5 different subsets of library plans comprising 20, 40, 60, 80, and 100 plans, leading to 5 different RP models for each site. For every validation patient, a TO plan (TO_VP) was created. For every patient, 5 RP plans were automatically generated using RP models. The dosimetric parameters of the 6 plans (TO_VP + 5 RP plans) were compared using Pearson correlation and Greenhouse-Geisser analysis. RESULTS: Planning target volume (PTV) dose volume parameters PTVD95% in 6 competing plans varied between 97.6 ± 0.7% and 98.1 ± 0.6% in HN cases and 98.8 ± 0.3% and 99.0 ± 0.4% in cervix cases. Overall, for both sites, the mean variations in organ at risk (OAR) doses or volumes were within 50 cGy, 0.5%, and 0.2 cc between library plans, and if TO_VP was included the variations deteriorated to 180 cGy, 0.4%, and 15 cc. All OARs in both sites, except D0.1 ccspine, showed a statistically insignificant variation between all plans. CONCLUSIONS: Dosimetric variation among various output plans generated from 5 RP libraries is minimal and clinically insignificant. The optimal output plan can be derived from the least-weighted library consisting of 20 plans. ADVANCES IN KNOWLEDGE: This article shows that, when the constituent plans are subjected to trade-off exploration, the number of constituent plans for a knowledge-based planning module is not relevant in terms of its dosimetric output.


Asunto(s)
Neoplasias de Cabeza y Cuello , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Neoplasias del Cuello Uterino , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Femenino , Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias del Cuello Uterino/radioterapia , Bases del Conocimiento , Radioterapia de Intensidad Modulada/métodos
7.
J Org Chem ; 89(9): 6527-6532, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38639379

RESUMEN

A double regioselective cycloaddition reaction of 1,3-diynes with azide is reported to synthesize fully substituted 5-alkynyl-1,2,3-triazoles without any catalyst, metal, or other factor. Computational studies revealed that the 5-alkynyl-1,2,3-triazole derivative is both kinetically and thermodynamically favorable irrespective of the nature of the substituents at the alkyne termini in 1,3-diynes. The simplicity of the reaction, extremely high regioselectivity under metal-free conditions, wide substrate scope, and good to excellent yields might inspire further studies of the cycloaddition of 1,3-diynes in addition to click chemistry.

8.
Front Bioeng Biotechnol ; 12: 1326143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464542

RESUMEN

Introduction: The development of an effective extender is important for semen preservation and the artificial insemination (AI) industry. This study demonstrates the beneficial effect of zinc oxide nanoparticles (ZnO-NPs) as an additive to semen extenders to improve semen quality, fertility, and antibacterial activity during liquid preservation in a boar model. Methods: Initially, to find out the safe concentration of ZnO-NPs in sperm cells, a wide range of ZnO-NP concentrations (0, 5, 10, 50, 100, 500, and 1,000 µM) were co-incubated with sperm at 37°C for a cytotoxic study. These NP concentrations were compared to their salt control zinc acetate (ZA) at the same concentrations and to a control group. The effect of the different concentrations of ZnO-NPs on sperm motility, membrane integrity, mitochondrial membrane potential (MMP), and apoptosis was assessed. Accordingly, the non-toxic dose was selected and supplemented in MODENA extender to determine its beneficial effect on the boar semen parameters mentioned and the lipid peroxidation (LPO) levels during liquid preservation at 16°C for 6 days. The non-cytotoxic dosage was subsequently chosen for AI, fertility investigations, and the evaluation of the antibacterial efficacy of ZnO-NPs during preservation hours. An antibacterial study of ZnO-NPs and its salt control at doses of 10 µM and 50 µM was carried out by the colony forming unit (CFU) method. Results and discussion: The cytotoxic study revealed that 5, 10, and 50 µM of ZnO-NPs are safe. Consequently, semen preserved in the MODENA extender, incorporating the non-toxic dose, exhibited 10 and 50 µM ZnO-NPs as the optimal concentrations for beneficial outcomes during liquid preservation at 16°C. ZnO-NPs of 10 µM concentration resulted in a significantly (p < 0.05) improved conception rate of 86.95% compared to the control of 73.13%. ZnO-NPs of 10 and 50 µM concentrations exhibit potent antimicrobial action by reducing the number of colonies formed with days of preservation in comparison to the negative control. The investigation concluded that the incorporation of 10 µM ZnO-NPs led to enhancements in sperm motility, membrane integrity, and MMP, attributed to a reduction in the malondialdehyde (MDA) levels. This improvement was accompanied by a concurrent increase in fertility rates, including farrowing rate and litter size, during the liquid preservation process. Furthermore, ZnO-NPs exhibited an antimicrobial effect, resulting in decreased bacterial growth while preserving boar semen at 16°C for 6 days. These findings suggest that ZnO-NPs could serve as a viable alternative to antibiotics, potentially mitigating antibiotic resistance concerns within the food chain.

9.
J Cancer Res Ther ; 20(1): 224-231, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38554325

RESUMEN

PURPOSE: The purpose of this study is to evaluate the dosimetric and treatment delivery characteristics of volumetric modulated arc therapy technique (VMAT)-based craniospinal axis irradiation (CSI) between ring gantry Halcyon (HAL) and C-arm based Novalis Tx (NTx) linear accelerator. Set-up margin and treatment delivery time for both machines were also taken into account. MATERIALS AND METHODS: Fifteen patients, 4 females and 11 males treated between March 2019 and February 2022 within the age group 4-56 years simulated in the supine position and were planned for multiple isocentre VMAT technique in ring gantry Halcyon and C-Arm Novalis linear accelerator for 6FFF and 6 MV flatten beam energy. The number of isocenters was the same in both the machines, usually three for adult adolescent age group patients and two for pediatric patients. Total on-couch time and the patient positional shift were captured for each isocenter during each session of treatment. Margins were calculated using Herk's formula of margin = 2.5Σ +0.7σ. Dosimetry, on-couch time, and set-up margin were compared between two competing arms. RESULTS: Ninety-five percent of PTV coverage (P = 0.333), volume receiving 107% (P = 0.676), total MU (P = 0.818) in both the arms were comparable and statically insignificant. Low-dose spillage such as D20% (P = 0.212) and D50% (P = 0.008) was lesser in HAL comparable to NTx. CI and HI were statically insignificant. Out of 26 organs at risk (OAR), only 3 organs showed a statically significant dose difference. The mean and maximum setup margin in any linear direction was 0.45 and 0.53 cm for HAL and 0.37 and 0.56 cm for NTx and, variation was statistically insignificant (0.23 < P < 0.47). On-couch time was 4.0 ± 5.5 min lesser for HAL and the difference in on-couch time between the two arms was statistically different. CONCLUSION: Even though the majority of the delivery parameters such as gantry speed, dose rate, beam characteristic (flatten or unflatten), MLC width, and speed between the ring gantry HAL and C-arm NTx linear accelerators were distinctly different, they offered no or minimal difference in the dose distribution and in the setup margin. HAL gives a faster treatment time delivery, which could be crucial for some selective cases such as patients receiving treatment under general anesthesia.


Asunto(s)
Irradiación Craneoespinal , Radioterapia de Intensidad Modulada , Masculino , Adulto , Femenino , Humanos , Niño , Adolescente , Preescolar , Adulto Joven , Persona de Mediana Edad , Radioterapia de Intensidad Modulada/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica , Aceleradores de Partículas
10.
Front Immunol ; 15: 1331480, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38545103

RESUMEN

Macrophages are critical regulators of the tumor microenvironment and often present an immuno-suppressive phenotype, supporting tumor growth and immune evasion. Promoting a robust pro-inflammatory macrophage phenotype has emerged as a therapeutic modality that supports tumor clearance, including through synergy with immune checkpoint therapies. Polyglucose nanoparticles (macrins), which possess high macrophage affinity, are useful vehicles for delivering drugs to macrophages, potentially altering their phenotype. Here, we examine the potential of functionalized macrins, synthesized by crosslinking carboxymethyl dextran with L-lysine, as effective carriers of immuno-stimulatory drugs to tumor-associated macrophages (TAMs). Azide groups incorporated during particle synthesis provided a handle for click-coupling of propargyl-modified ß-cyclodextrin to macrins under mild conditions. Fluorescence-based competitive binding assays revealed the ability of ß-cyclodextrin to non-covalently bind to hydrophobic immuno-stimulatory drug candidates (Keq ~ 103 M-1), enabling drug loading within nanoparticles. Furthermore, transcriptional profiles of macrophages indicated robust pro-inflammatory reprogramming (elevated Nos2 and Il12; suppressed Arg1 and Mrc1 expression levels) for a subset of these immuno-stimulatory agents (UNC2025 and R848). Loading of R848 into the modified macrins improved the drug's effect on primary murine macrophages by three-fold in vitro. Intravital microscopy in IL-12-eYFP reporter mice (24 h post-injection) revealed a two-fold enhancement in mean YFP fluorescence intensity in macrophages targeted with R848-loaded macrins, relative to vehicle controls, validating the desired pro-inflammatory reprogramming of TAMs in vivo by cell-targeted drug delivery. Finally, in an intradermal MC38 tumor model, cyclodextrin-modified macrin NPs loaded with immunostimulatory drugs significantly reduced tumor growth. Therefore, efficient and effective repolarization of tumor-associated macrophages to an M1-like phenotype-via drug-loaded macrins-inhibits tumor growth and may be useful as an adjuvant to existing immune checkpoint therapies.


Asunto(s)
Nanopartículas , Neoplasias , beta-Ciclodextrinas , Animales , Ratones , Preparaciones Farmacéuticas , Macrófagos Asociados a Tumores , Nanopartículas/química , Fenotipo , Microambiente Tumoral
11.
Radiol Phys Technol ; 17(2): 527-535, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38526690

RESUMEN

This study analyse setup time (ST) and frequency of on-board imaging for stereotactic abdomen (liver, stomach), lung, and spine radiotherapy in the absence of automatic rotational correction. Total 53 stereotactic body radiotherapy (SBRT) patients, 28 of abdomen, 19 lung, and 6 spine treated for 230 sessions in O-ring gantry accelerator were evaluated for ST analysis. The mean setup time for all patients, abdomen, lung, and spine cases were 7.7 ± 7.4 min, 9.2 ± 9.2 min, 6.3 ± 4.1 min, and 5.5 ± 3.3 min, respectively. Median number CBCT was 2. 96% of cases had a CBCT between 1 and 3, and 9 (4%) had ≥ 4 CBCTs. Overall, 38.1%, 35.5%, 22.1%, 2.2%, and 2.2% of setup time fall into window of 0-5 min, 5-10 min, 10-20 min, 20-30 min, and > 30 min. Most difficult challenge is to negotiate with unknown rotational errors. It will be easy to dealt with them without automatic rotational correction if values are known.


Asunto(s)
Aceleradores de Partículas , Radiocirugia , Radiocirugia/métodos , Radiocirugia/instrumentación , Humanos , Factores de Tiempo , Rotación , Tomografía Computarizada de Haz Cónico , Errores de Configuración en Radioterapia/prevención & control , Planificación de la Radioterapia Asistida por Computador/métodos
12.
ACS Biomater Sci Eng ; 10(3): 1577-1588, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38357739

RESUMEN

Protein therapeutics represent a rapidly growing class of pharmaceutical agents that hold great promise for the treatment of various diseases such as cancer and autoimmune dysfunction. Conventional systemic delivery approaches, however, result in off-target drug exposure and a short therapeutic half-life, highlighting the need for more localized and controlled delivery. We have developed an affinity-based protein delivery system that uses guest-host complexation between ß-cyclodextrin (CD, host) and adamantane (Ad, guest) to enable sustained localized biomolecule presentation. Hydrogels were formed by the copolymerization of methacrylated CD and methacrylated dextran. Extrusion fragmentation of bulk hydrogels yielded shear-thinning and self-healing granular hydrogels (particle diameter = 32.4 ± 16.4 µm) suitable for minimally invasive delivery and with a high host capacity for the retention of guest-modified proteins. Bovine serum albumin (BSA) was controllably conjugated to Ad via EDC chemistry without affecting the affinity of the Ad moiety for CD (KD = 12.0 ± 1.81 µM; isothermal titration calorimetry). The avidity of Ad-BSA conjugates was directly tunable through the number of guest groups attached, resulting in a fourfold increase in the complex half-life (t1/2 = 5.07 ± 1.23 h, surface plasmon resonance) that enabled a fivefold reduction in protein release at 28 days. Furthermore, we demonstrated that the conjugation of Ad to immunomodulatory cytokines (IL-4, IL-10, and IFNγ) did not detrimentally affect cytokine bioactivity and enabled their sustained release. Our strategy of avidity-controlled delivery of protein-based therapeutics is a promising approach for the sustained local presentation of protein therapeutics and can be applied to numerous biomedical applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Hidrogeles , Hidrogeles/química
13.
Sci Rep ; 14(1): 1779, 2024 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245579

RESUMEN

Rice (Oryza sativa) being among the most important food crops in the world is also susceptible to various bacterial and fungal diseases that are the major stumbling blocks in the way of increased production and productivity. The bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae and the sheath blight disease caused by Rhizoctonia solani are among the most devastating diseases of the rice crop. In spite of the availability of array of chemical control, there are chances of development of resistance. Thus, there is a need for the nanotechnological intervention for management of disease in the form of copper and silver nano-composites. The copper (CuNPs) and silver nanoparticles (AgNPs) were synthesized using green route and characterized using different high throughput techniques, i.e., UV-Vis, FT-IR, DLS, XRD, FE-SEM, TEM. The particle size and zeta potential of synthesized CuNPs and AgNPs were found 273 nm and - 24.2 mV; 95.19 nm and - 25.5 mV respectively. The nanocomposite of CuNPs and AgNPs were prepared having particle size in the range of 375-306 nm with improved stability (zeta potential - 54.7 to - 39.4 mV). The copper and silver nanoparticle composites evaluated against Xanthomonas oryzae pv. oryzae and Rhizoctonia solani were found to have higher antibacterial (inhibition zone 13 mm) and antifungal activities (77%) compared to only the copper nanoparticle (8 mm; 62% respectively). Net house trials of nano-composite formulations against the bacterial blight of rice also corroborated the potential of nanocomposite formulation. In silico studies were carried out selecting two disease-causing proteins, peptide deformylase (Xanthomonas oryzae) and pectate lyase (Rhizoctonia solani) to perform the molecular docking. Interaction studies indicatedthat both of these proteins generated better complex with CuNPs than AgNPs. The study suggested that the copper and silver nano-composites could be used for developing formulations to control these devastating rice diseases.


Asunto(s)
Nanopartículas del Metal , Oryza , Rhizoctonia , Xanthomonas , Plata/farmacología , Plata/metabolismo , Nanopartículas del Metal/química , Cobre/farmacología , Cobre/metabolismo , Simulación del Acoplamiento Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
14.
ACS Appl Bio Mater ; 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38231485

RESUMEN

Physiochemical properties of nanoparticles, such as their size and chemical composition, dictate their interaction with professional phagocytes of the innate immune system. Macrophages, in particular, are key regulators of the immune microenvironment that heavily influence particle biodistribution as a result of their uptake. This attribute enables macrophage-targeted delivery, including for phenotypic modulation. Saccharide-based materials, including polyglucose polymers and nanoparticles, are efficient vehicles for macrophage-targeted delivery. Here, we investigate the influence of particle size on cyclodextrin nanoparticle (CDNP) uptake by macrophages and further examine the receptor-mediated interactions that drive macrophage-targeted delivery. We designed and synthesized CDNPs ranging in size from 25 nm to >100 nm in diameter. Increasing particle size was correlated with greater uptake by macrophages in vitro. Both scavenger receptor A1 and mannose receptor were critical mediators of macrophage-targeted delivery, inhibition of which reduced the extent of uptake. Finally, we investigated the cellular bioavailability of drug-loaded CDNPs using a model anti-inflammatory drug, celastrol, which demonstrated that drug bioactivity is improved by CDNP loading relative to free drug alone. This study thus elucidates the interactions between the polyglucose nanoparticles and macrophages, thereby facilitating their application in macrophage-targeted drug delivery that has applications in the context of tissue injury and repair.

15.
Radiat Environ Biophys ; 63(1): 71-80, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38078988

RESUMEN

This study aims to compare dose escalation between two groups of reirradiated cancer patients, one with the previous contour and radiotherapy plan available on the treatment planning system and the other without. First group is identified as DICOM-group, while the other one is called non-DICOM group. The current study included 89 patients, 57 in the DICOM, and 32 in the non-DICOM group, who received reirradiation for recurrent or second primary tumours between 2019 and 2021. For the DICOM group, doses to 0.2cc volume for spine, brainstem, and optic apparatus from first radiation were converted into structures and transferred to reirradiation CT using deformable registration. First, one radiotherapy plan was created using the doctor prescribed dose (baseline prescription RxD_B); further an escalated dose (RxD_E) plan, taking into account all the dose volume parameters from previous radiation, was created only for DICOM group. In non-DICOM group patients were planned only for RxD_B. The maximum accepted dose escalation was 21 Gy. Radiotherapy prescription dose during earlier (first) treatment in DICOM and non-DICOM groups were 61 ± 5.6 Gy and 30-66 Gy, respectively. DICOM and non-DICOM groups had nearly identical baseline doses: 52.5 ± 10.7 Gy and 50.6 ± 6.9 Gy (difference 1.9 ± 12.7 Gy). Dose escalation was possible for 51 out of 57 patients in the DICOM-group. Average escalated dose in DICOM-group was 59.2 ± 6.2 Gy, with an incremental dose of 6.7 ± 12.4 Gy from the baseline prescription. No dose escalation was opted for in the non-DICOM group due to the unavailability of dose volume information from previous radiation. Reirradiation for head and neck cases allowed for a moderate to high dose escalation, facilitated by the presence of pertinent DICOM information from the initial radiotherapy.


Asunto(s)
Neoplasias , Planificación de la Radioterapia Asistida por Computador , Humanos , Dosificación Radioterapéutica , Neoplasias/radioterapia
16.
J Phys Chem A ; 128(1): 251-260, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38158557

RESUMEN

Quantum chemical calculations are performed to explore all of the possible pathways for primary ozonide (POZ) formation from gas-phase ozonolysis of catechol. Canonical transition state theory has been used to calculate the rate coefficients of individual steps for the formation of POZ. The calculated rate coefficients for 1,3-cycloaddition of ozone at the (i) unsaturated C(OH)═C(OH) bond and (ii) CH═C(OH) of catechol, respectively, are in good agreement with the experimental rate constant. In general, subsequent decomposition of POZ leads to well-known Criegee Intermediates. This work reveals a parallel pathway by which the endo-addition of ozone at CH═C(OH) of catechol proceeds through oxepin derivatives along with the paths leading to Criegee Intermediates and peroxy acids. The 7-membered heterocyclic oxepin derivatives have lower energies than Criegee Intermediates but similar relative energies with peroxy acids.

17.
South Asian J Cancer ; 12(4): 311-313, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38130280

RESUMEN

Biplab SarkarObjectives This editorial describes the growth pattern of female radiation oncologists (FRO) in India and the prediction of gender equality through a mathematical formulation. Materials and Methods Among the countries in South Asia, India has the largest population of radiation oncologists (RO), a total of 3,763: 1,286 female and 2,477 male radiation oncologists (MROs), and they are registered with the Association of Radiation Oncologists of India (AROI). The data were analyzed to find the differential and cumulative growth pattern of the FROs and MROs and predict gender equality in radiation oncology. The cumulative growth rate indicates the total number of FROs and MROs by end of every year. Differential growth rate indicates the differential increase in the number of FROs and MROs for a particular year. Annual cumulative and differential growth patterns were plotted as a function of the time, and an analytical functional form was fitted to predict the future growth pattern and achievement of gender equality. Results AROI registration of FROs and MROs for 2013-2020 were as follows: FRO: MRO 2013-54: 102, 2014-99: 162, 2015-77: 148; 2016-86: 143, 2017-110: 110, 2018-116: 151, 2019-121: 152, 2020 (October)-129: 110. Differential growth pattern between 2013 and 2020 with the average incremental growth rate for FROs and MROs were 12.7 ± 14.8% and 2.1 ± 32.0%. Differential growth rate FRO fits in a power-law exponent 58.6 ×(Power0.3695), where MRO growth pattern showed a saturation [4.7ln(×) + 128.5] . Gender parity among Indian radiation oncologists is likely to be achieved by end of 2027. Conclusions The present density of FRO in India 34.1% is high compared to developed countries such as the United States (≈26%). It is a big leap for the Indian radiation oncology society tending toward gender parity.

18.
J Med Phys ; 48(3): 221-229, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37969141

RESUMEN

This article aims to identify, through a literature review, the best intensity-modulated technique (IMRT)/volumetric-modulated arc therapy (VMAT) for the breast/chest wall (Br/CW) as a function of the treatment planning system (TPS) and present the institutional dosimetric data for the same. A PubMed search was conducted following intensity-modulated irradiation techniques (IMRT) presented in the study: field-in-field (FiF), tangential IMRT (t-IMRT), multi-field IMRT, tangential VMAT (t-VMAT), half-arc VMAT (HA-VMAT), and large arc VMAT (LA-VMAT). The literature with at least one arm VMAT is included in this study. A total of 370 articles were identified between 2010 and 2022, out of which 19 articles were found to be unique. These articles were classified in terms of the TPS used: Eclipse (9), Monaco (6), RayStation (2), Pinnacle (1), and one unidentified TPS. Based on the literature review, dosimetric attributes, and second cancer risk analysis (SCRA), t-IMRT was found to be the most preferable technique in Eclipse, Pinnacle, and RayStation TPS. However, for Monaco TPS, t-VMAT (approximately 30° tangential arc) offers better dose coverage with lower organ-at-risk (OAR) doses. In terms of OAR doses and SCRA, LA-VMAT (≥210°) and HA-VMAT (180°) are avoidable techniques in any TPS, and FiF should be preferred over these two techniques. In our present institution, which uses the Eclipse TPS, data for 300 patients treated with t-IMRT were collected. The data included beam angle, monitor unit [MU], target coverage (D95% and V105% [cc]), and analysis of the maximum (%), and mean dose (%) of the OAR. t-IMRT utilizes two medial and three lateral tangential beams placed at a spread of approximately 10° and 20°, respectively. The results showed a D95% of 96.3 ± 1.2% and a V105% of 4.9 ± 7.0 cc. The mean doses to the heart and ipsilateral lung were 10.1 ± 20.9% and 11.4 ± 10.2%, respectively. The mean MU was 1282.7 ± 453.4. Based on the findings, the most preferred intensity-modulated technique for Eclipse, Pinnacle, and RayStation is t-IMRT, while for Monaco, it is t-VMAT. The data from the Eclipse planning system demonstrate a satisfactory dosimetric outcome for t-IMRT. However, the use of VMAT techniques employing an arc angle between 180° and 210° or higher is strongly discouraged.

19.
J Trace Elem Med Biol ; 80: 127296, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37659125

RESUMEN

BACKGROUND: Reactive oxygen species (ROS) are strongly linked with oxidative stress (OS) generated during the process of sperm cryopreservation. Indeed, cellular damage from ROS has been implicated during sperm cryopreservation which causes deterioration in sperm quality and antioxidant nanoparticles (NPs) have been successful in preventing such damage. The interaction of NPs with sperm cells has been less frequently explored in farm animals. OBJECTIVE: The present study explored the effect of NP supplementation on sperm ultrastructure, potential interaction with sperm membrane (plasma and acrosome membrane), heat shock protein (HSP) gene expression levels and sperm quality in cryopreserved buck semen. MATERIALS AND METHODS: Thirty-two (32) ejaculates were collected from four (4) adult male bucks and then diluted in Tris- citric acid- fructose- egg yolk (TCFY) extender containing the Zinc-oxide (ZnO) and Selenium (Se) NP treatments (T0: Control; TZn: 0.1 mg/mL ZnO NPs and TSe: 1 µg/mL Se NPs) after initial evaluation. Diluted semen was packed in 0.25 mL French mini straws and then stored in liquid nitrogen (LN2). Sperm parameters, lipid peroxidation (LPO) profile, sperm head morphology ultrastructural classification under transmission electron microscope (TEM), potential interaction of NPs with sperm membrane and expression of HSP genes were evaluated in the different treatment groups. RESULTS: We found a significant (p < 0.05) increase in the percentage of spermatozoa with intact plasma membrane, and intact acrosome in the ZnO (0.1 mg/mL) and Se (1 µg/mL) NP supplemented groups in comparison to the frozen control group. TEM assessment revealed no internalization of both ZnO and Se NPs into the sperm structure. Few occasional contacts of ZnO NPs with the sperm membrane and a few agglomerates of Se NPs around the area of damaged membranes were visualized. HSP70 and HSP90 mRNA levels were significantly (p < 0.001) higher in the NP supplemented groups in comparison to the control. HSP70 and HSP90 mRNA levels had a strong positive association with sperm motility and a weak to moderate association with other sperm parameters. CONCLUSIONS: Current findings indicated that ZnO NPs are more potent than Se NPs in ameliorating peroxidative damages during sperm cryopreservation, increases semen quality parameters possibly by increasing the expression levels of HSP genes in buck semen. Furthermore, NP supplementation may have a potential role in preserving sperm head ultrastructure by acting as an antioxidant and reducing OS during various degrees of cellular insults, which needs to be further explored.


Asunto(s)
Nanopartículas , Selenio , Preservación de Semen , Óxido de Zinc , Animales , Masculino , Análisis de Semen/veterinaria , Óxido de Zinc/farmacología , Selenio/farmacología , Semen , Antioxidantes/farmacología , Proteínas de Choque Térmico/farmacología , Especies Reactivas de Oxígeno/farmacología , Cabras , Motilidad Espermática , Preservación de Semen/veterinaria , Espermatozoides , Criopreservación/veterinaria , Proteínas HSP70 de Choque Térmico , ARN Mensajero
20.
Opt Lett ; 48(18): 4769-4772, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37707898

RESUMEN

Solid-state self-powered UV detection is strongly required in various application fields to enable long-term operation. However, this requirement is incompatible with conventionally used metal-semiconductor-metal (MSM) UV photodetectors (PDs) due to the symmetric design of Schottky contacts. In this work, a self-powered MSM solar-blind UV-PD was realized using a lateral pn junction architecture. A large built-in electric field was obtained in the MSM-type UV-PD without impurity doping, leading to efficiency carrier separation and enhanced photoresponsivity at zero external bias. The solar-blind UV-PD exhibits a cutoff wavelength of 280 nm, a photo/dark current ratio of over 105, and a responsivity of 425.13 mA/W at -10 V. The mechanism of self-powered UV photodetection was further investigated by TCAD simulation of the internal electric field and carrier distributions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...